IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v32y2012i1p154-166.html
   My bibliography  Save this article

Optimizing Statin Treatment Decisions for Diabetes Patients in the Presence of Uncertain Future Adherence

Author

Listed:
  • Jennifer E. Mason
  • Darin A. England
  • Brian T. Denton
  • Steven A. Smith
  • Murat Kurt
  • Nilay D. Shah

Abstract

Background . Statins are an important part of the treatment plan for patients with type 2 diabetes. However, patients who are prescribed statins often take less than the prescribed amount or stop taking the drug altogether. This suboptimal adherence may decrease the benefit of statin initiation. Objective . To estimate the influence of adherence on the optimal timing of statin initiation for patients with type 2 diabetes. Method . The authors use a Markov decision process (MDP) model to optimize the treatment decision for patients with type 2 diabetes. Their model incorporates a Markov model linking adherence to treatment effectiveness and long-term health outcomes. They determine the optimal time of statin initiation that minimizes expected costs and maximizes expected quality-adjusted life years (QALYs). Results . In the long run, approximately 25% of patients remain highly adherent to statins. Based on the MDP model, generic statins lower costs in men and result in a small increase in costs in women relative to no treatment. Patients are able to noticeably increase their expected QALYs by 0.5 to 2 years depending on the level of adherence. Conclusions . Adherence-improving interventions can increase expected QALYs by as much as 1.5 years. Given suboptimal adherence to statins, it is optimal to delay the start time for statins; however, changing the start time alone does not lead to significant changes in costs or QALYs.

Suggested Citation

  • Jennifer E. Mason & Darin A. England & Brian T. Denton & Steven A. Smith & Murat Kurt & Nilay D. Shah, 2012. "Optimizing Statin Treatment Decisions for Diabetes Patients in the Presence of Uncertain Future Adherence," Medical Decision Making, , vol. 32(1), pages 154-166, January.
  • Handle: RePEc:sae:medema:v:32:y:2012:i:1:p:154-166
    DOI: 10.1177/0272989X11404076
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X11404076
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X11404076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brouwer, Werner B. F. & van Exel, N. Job A., 2004. "Discounting in decision making: the consistency argument revisited empirically," Health Policy, Elsevier, vol. 67(2), pages 187-194, February.
    2. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    2. Hui Zhang & Tao Huang & Tao Yan, 2022. "A quantitative analysis of risk-sharing agreements with patient support programs for improving medication adherence," Health Care Management Science, Springer, vol. 25(2), pages 253-274, June.
    3. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    4. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    5. Daniel R. Jiang & Warren B. Powell, 2015. "An Approximate Dynamic Programming Algorithm for Monotone Value Functions," Operations Research, INFORMS, vol. 63(6), pages 1489-1511, December.
    6. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    7. Mabel C. Chou & Mahmut Parlar & Yun Zhou, 2017. "Optimal Timing to Initiate Medical Treatment for a Disease Evolving as a Semi-Markov Process," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 194-217, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mason, J.E. & Denton, B.T. & Shah, N.D. & Smith, S.A., 2014. "Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 727-738.
    2. Wenjuan Fan & Yang Zong & Subodha Kumar, 2022. "Optimal treatment of chronic kidney disease with uncertainty in obtaining a transplantable kidney: an MDP based approach," Annals of Operations Research, Springer, vol. 316(1), pages 269-302, September.
    3. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    4. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    5. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    6. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    7. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    8. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.
    9. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    10. Brouwer, Werner B.F. & van Exel, N. Job A., 2005. "Expectations regarding length and health related quality of life: Some empirical findings," Social Science & Medicine, Elsevier, vol. 61(5), pages 1083-1094, September.
    11. Chris P. Lee & Glenn M. Chertow & Stefanos A. Zenios, 2008. "Optimal Initiation and Management of Dialysis Therapy," Operations Research, INFORMS, vol. 56(6), pages 1428-1449, December.
    12. Yan Yang & Jeremy D. Goldhaber-Fiebert & Lawrence M. Wein, 2013. "Analyzing Screening Policies for Childhood Obesity," Management Science, INFORMS, vol. 59(4), pages 782-795, April.
    13. Erik Rosenstrom & Sareh Meshkinfam & Julie Simmons Ivy & Shadi Hassani Goodarzi & Muge Capan & Jeanne Huddleston & Santiago Romero-Brufau, 2022. "Optimizing the First Response to Sepsis: An Electronic Health Record-Based Markov Decision Process Model," Decision Analysis, INFORMS, vol. 19(4), pages 265-296, December.
    14. Hawre Jalal & Petros Pechlivanoglou & Eline Krijkamp & Fernando Alarid-Escudero & Eva Enns & M. G. Myriam Hunink, 2017. "An Overview of R in Health Decision Sciences," Medical Decision Making, , vol. 37(7), pages 735-746, October.
    15. Maryam Alimohammadi & W. Art Chaovalitwongse & Hubert J. Vesselle & Shengfan Zhang, 2023. "Utilizing Clinical Trial Data to Assess Timing of Surgical Treatment for Emphysema Patients," Medical Decision Making, , vol. 43(1), pages 110-124, January.
    16. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    17. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    18. Nazila Bazrafshan & M. M. Lotfi, 2020. "A finite-horizon Markov decision process model for cancer chemotherapy treatment planning: an application to sequential treatment decision making in clinical trials," Annals of Operations Research, Springer, vol. 295(1), pages 483-502, December.
    19. Amin Khademi & Denis R. Saure & Andrew J. Schaefer & Ronald S. Braithwaite & Mark S. Roberts, 2015. "The Price of Nonabandonment: HIV in Resource-Limited Settings," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 554-570, October.
    20. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:32:y:2012:i:1:p:154-166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.