IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00793203.html
   My bibliography  Save this paper

SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence

Author

Listed:
  • Mohamed Chikhi

    (Université Kasdi Merbah Ouargla, LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Anne Peguin-Feissolle

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Michel Terraza

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

Abstract

This paper analyzes the cyclical behavior of Dow Jones by testing the existence of long memory through a new class of semiparametric ARFIMA models with HYGARCH errors (SEMIFARMA-HYGARCH); this class includes nonparametric deterministic trend, stochastic trend, short-range and long-range dependence and long memory heteroscedastic errors. We study the daily returns of the Dow Jones from 1896 to 2006. We estimate several models and we find that the coefficients of the SEMIFARMA-HYGARCH model, including long memory coefficients for the equations of the mean and the conditional variance, are highly significant. The forecasting results show that the informational shocks have permanent effects on volatility and the SEMIFARMA-HYGARCH model has better performance over some other models for long and/or short horizons. The predictions from this model are also better than the predictions of the random walk model; accordingly, the weak efficiency assumption of financial markets seems violated for Dow Jones returns studied over a long period.

Suggested Citation

  • Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2012. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Working Papers halshs-00793203, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00793203
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00793203
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00793203/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Conrad, Christian, 2010. "Non-negativity conditions for the hyperbolic GARCH model," Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
    2. Beran, Jan & Ocker, Dirk, 1999. "Volatility of Stock Market Indices - An Analysis based on SEMIFAR Models," CoFE Discussion Papers 99/14, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Härdle, Wolfgang Karl & Mungo, Julius, 2008. "Value-at-risk and expected shortfall when there is long range dependence," SFB 649 Discussion Papers 2008-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Beran, Jan, 1999. "SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity," CoFE Discussion Papers 99/16, University of Konstanz, Center of Finance and Econometrics (CoFE).
    6. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    7. McMillan, David G. & Kambouroudis, Dimos, 2009. "Are RiskMetrics forecasts good enough? Evidence from 31 stock markets," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 117-124, June.
    8. Hall, Peter & Hart, Jeffrey D., 1990. "Nonparametric regression with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 36(2), pages 339-351, December.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    11. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    12. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    13. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    14. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    15. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
    16. Tang, Ta-Lun & Shieh, Shwu-Jane, 2006. "Long memory in stock index futures markets: A value-at-risk approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 437-448.
    17. Feng, Yuanhua & Beran, Jan & Yu, Keming, 2006. "Modelling financial time series with SEMIFAR-GARCH model," MPRA Paper 1593, University Library of Munich, Germany.
    18. Bruce Mizrach, 1995. "A Simple Nonparametric Test for Independence," Departmental Working Papers 199523, Rutgers University, Department of Economics.
    19. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    20. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    21. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    22. Beran, Jan & Ocker, Dirk, 1999. "SEMIFAR Forecasts, with Applications to Foreign Exchange Rates," CoFE Discussion Papers 99/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    23. John Barkoulas & Christopher F. Baum, 1997. "Long Memory and Forecasting in Euroyen Deposit Rates," Boston College Working Papers in Economics 361, Boston College Department of Economics.
    24. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    25. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    27. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    28. Grossman, Sanford J, 1976. "On the Efficiency of Competitive Stock Markets Where Trades Have Diverse Information," Journal of Finance, American Finance Association, vol. 31(2), pages 573-585, May.
    29. Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
    30. Beran, Jan & Feng, Yuanhua & Ocker, Dirk, 1999. "SEMIFAR models," Technical Reports 1999,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    31. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    32. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quynh-Trang Nguyen & John Francis Diaz & Jo-Hui Chen & Ming-Yen Lee, 2019. "Fractional Integration in Corporate Social Responsibility Indices: A FIGARCH and HYGARCH Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(7), pages 836-850, July.
    2. Argel S. Masa & John Francis T. Diaz, 2017. "Long-memory Modelling and Forecasting of the Returns and Volatility of Exchange-traded Notes (ETNs)," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(1), pages 23-53, February.
    3. Boubaker, Heni & Sghaier, Nadia, 2015. "Semiparametric generalized long-memory modeling of some mena stock market returns: A wavelet approach," Economic Modelling, Elsevier, vol. 50(C), pages 254-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers 07-19, Association Française de Cliométrie (AFC).
    2. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    3. Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.
    4. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    5. Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
    6. Beran, Jan & Feng, Yuanhua, 2002. "Recent Developments in Non- and Semiparametric Regression with Fractional Time Series Errors," CoFE Discussion Papers 02/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. repec:ipg:wpaper:2013-009 is not listed on IDEAS
    8. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    10. repec:ipg:wpaper:9 is not listed on IDEAS
    11. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
    12. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    13. repec:ipg:wpaper:201409 is not listed on IDEAS
    14. Argel S. Masa & John Francis T. Diaz, 2017. "Long-memory Modelling and Forecasting of the Returns and Volatility of Exchange-traded Notes (ETNs)," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(1), pages 23-53, February.
    15. Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2013. "Long memory and asymmetry in the volatility of commodity markets and Basel Accord: choosing between models," Working Papers 2013-9, Department of Research, Ipag Business School.
    16. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    17. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    18. Conrad, Christian, 2010. "Non-negativity conditions for the hyperbolic GARCH model," Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
    19. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2015. "Modeling and forecasting crude oil price volatility: Evidence from historical and recent data," FinMaP-Working Papers 31, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    20. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
    21. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    22. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    23. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.

    More about this item

    Keywords

    kernel methodology; long memory; SEMIFARMA model; HYGARCH model; nonparametric deterministic trend;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00793203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.