IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v31y2010i3p182-209.html
   My bibliography  Save this article

Adaptive wavelet decompositions of stationary time series‡

Author

Listed:
  • Gustavo Didier
  • Vladas Pipiras

Abstract

A general and flexible framework for the wavelet‐based decompositions of stationary time series in discrete time, called adaptive wavelet decompositions (AWDs), is introduced. It is shown that several particular AWDs can be constructed with the aim of providing decomposition (approximation and detail) coefficients that exhibit certain nice statistical properties, where the latter can be chosen based on a range of theoretical or applied considerations. AWDs make use of a Fast Wavelet Transform‐like algorithm whose filters ‐ in contrast with their counterparts in Orthogonal Wavelet Decompositions (OWDs) – may depend on the scale. As with OWDs, this algorithm has good properties such as computational efficiency and invariance to polynomial trends. A property whose pursuit plays a central role in this work is the decorrelation of the detail coefficients. For many time series models (e.g., FARIMA(0,δ,0)), the AWD filters can be defined so that the resulting AWD detail coefficients are all (exactly) decorrelated. The corresponding AWDs, called Exact AWDs (EAWDs), are particularly useful in simulation of Gaussian stationary time series, if the associated filters have a fast decay. The proposed simulation methods generalize and improve upon existing wavelet‐based ones. AWDs for which the detail coefficients are not exactly decorrelated, but still more decorrelated than those of OWDs, are referred to as approximate AWDs (AAWDs). They can be obtained by truncating EAWD filters, or by adopting some of the existing approaches to modeling the dependence structure of the OWD detail coefficients (e.g., Craigmile et al., 2005). AAWDs naturally lead to new wavelet‐based Maximum Likelihood estimators. The performance of these estimators is investigated through simulations and from some theoretical standpoints. The focus in estimation is also on Gaussian stationary series, though the method is expected to work for non‐Gaussian stationary series as well.

Suggested Citation

  • Gustavo Didier & Vladas Pipiras, 2010. "Adaptive wavelet decompositions of stationary time series‡," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 182-209, May.
  • Handle: RePEc:bla:jtsera:v:31:y:2010:i:3:p:182-209
    DOI: 10.1111/j.1467-9892.2010.00656.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2010.00656.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2010.00656.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jensen Mark J., 1999. "An Approximate Wavelet MLE of Short- and Long-Memory Parameters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-17, January.
    2. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    3. E. Moulines & F. Roueff & M. S. Taqqu, 2007. "On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 155-187, March.
    4. M. Vannucci & F. Corradi, 1999. "Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 971-986.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kei Nanamiya, 2014. "Modelling For The Wavelet Coefficients Of Arfima Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 341-356, July.
    2. Sophie Achard & Irène Gannaz, 2016. "Multivariate Wavelet Whittle Estimation in Long-range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 476-512, July.
    3. Amit Sinha, 2024. "Daily and Weekly Geometric Brownian Motion Stock Index Forecasts," JRFM, MDPI, vol. 17(10), pages 1-22, September.
    4. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    5. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    6. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    7. Mamadou-Diéne Diop & Jules Sadefo Kamdem, 2023. "Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 1-40, March.
    8. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
    9. Boubaker Heni & Canarella Giorgio & Gupta Rangan & Miller Stephen M., 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    10. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    11. F. Roueff & M. S. Taqqu, 2009. "Asymptotic normality of wavelet estimators of the memory parameter for linear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 534-558, September.
    12. Triantafyllopoulos, K. & Nason, G.P., 2009. "A note on state space representations of locally stationary wavelet time series," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 50-54, January.
    13. Yasumasa Matsuda, 2014. "Wavelet Analysis Of Spatio-Temporal Data," TERG Discussion Papers 311, Graduate School of Economics and Management, Tohoku University.
    14. Guy Nason & Kara Stevens, 2015. "Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-24, September.
    15. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    16. Gabriel Huerta, 2005. "Multivariate Bayes Wavelet shrinkage and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(5), pages 529-542.
    17. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    18. Peter Martey Addo & Monica Billio & Dominique Guegan, 2012. "Studies in Nonlinear Dynamics and Wavelets for Business Cycle Analysis," Documents de travail du Centre d'Economie de la Sorbonne 12023r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Nov 2013.
    19. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    20. Brandon Whitcher, 2000. "Wavelet-Based Estimation Procedures For Seasonal Long-Memory Models," Computing in Economics and Finance 2000 148, Society for Computational Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:31:y:2010:i:3:p:182-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.