IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i1p50-54.html
   My bibliography  Save this article

A note on state space representations of locally stationary wavelet time series

Author

Listed:
  • Triantafyllopoulos, K.
  • Nason, G.P.

Abstract

In this note we show that the locally stationary wavelet process can be decomposed into a sum of signals, each of which follows a moving average process with time-varying parameters. We then show that such moving average processes are equivalent to state space models with stochastic design components. Using a simple simulation step, we propose a heuristic method of estimating the above state space models and then we apply the methodology to foreign exchange rates data.

Suggested Citation

  • Triantafyllopoulos, K. & Nason, G.P., 2009. "A note on state space representations of locally stationary wavelet time series," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 50-54, January.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:1:p:50-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00342-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin, 1986. "Nonstationary q-dependent processes and time-varying moving average models: invertibility properties and the forecasting problem," ULB Institutional Repository 2013/2005, ULB -- Universite Libre de Bruxelles.
    2. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    3. Piotr Fryzlewicz & Guy P. Nason, 2006. "Haar–Fisz estimation of evolutionary wavelet spectra," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(4), pages 611-634, September.
    4. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    5. Triantafyllopoulos, K. & Nason, G.P., 2007. "A Bayesian analysis of moving average processes with time-varying parameters," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1025-1046, October.
    6. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    2. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    3. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    4. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    5. Guy Nason & Kara Stevens, 2015. "Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-24, September.
    6. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    7. Winkelmann, Lars, 2013. "Quantitative forward guidance and the predictability of monetary policy: A wavelet based jump detection approach," SFB 649 Discussion Papers 2013-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    9. Alj, Abdelkamel & Jónasson, Kristján & Mélard, Guy, 2016. "The exact Gaussian likelihood estimation of time-dependent VARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 633-644.
    10. Maddalena Cavicchioli, 2020. "Invertibility and VAR Representations of Time-Varying Dynamic Stochastic General Equilibrium Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 61-86, January.
    11. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    12. Holger Dette & Weichi Wu, 2020. "Prediction in locally stationary time series," Papers 2001.00419, arXiv.org, revised Jan 2020.
    13. Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
    14. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    15. Triantafyllopoulos, K. & Nason, G.P., 2007. "A Bayesian analysis of moving average processes with time-varying parameters," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1025-1046, October.
    16. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    17. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    18. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    19. Joseph Tadjuidje Kamgaing & Hernando Ombao & Richard A. Davis, 2009. "Autoregressive processes with data‐driven regime switching," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 505-533, September.
    20. repec:hum:wpaper:sfb649dp2013-016 is not listed on IDEAS
    21. Tata Subba Rao & Granville Tunnicliffe Wilson & Alessandro Cardinali & Guy P. Nason, 2017. "Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 151-174, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:1:p:50-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.