IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v41y2020i4p520-535.html
   My bibliography  Save this article

Estimating Long Memory in Panel Random‐Coefficient AR(1) Data

Author

Listed:
  • Remigijus Leipus
  • Anne Philippe
  • Vytautė Pilipauskaitė
  • Donatas Surgailis

Abstract

We construct an asymptotically normal estimator β˜N for the tail index β of a distribution on (0,1) regularly varying at x=1, when its N independent realizations are not directly observable. The estimator β˜N is a version of the tail index estimator of Goldie and Smith (1987) [Goldie CM, Smith RL. 1987. The Quarterly Journal of Mathematics 38: 45–71] based on suitably truncated observations contaminated with arbitrarily dependent ‘noise’ which vanishes as N increases. We apply β˜N to panel data comprising N random‐coefficient AR(1) series, each of length T, for estimation of the tail index of the random coefficient at the unit root, in which case the unobservable random coefficients are replaced by sample lag 1 autocorrelations of individual time series. Using asymptotic normality of β˜N, we construct a statistical procedure to test if the panel random‐coefficient AR(1) data exhibit long memory. A simulation study illustrates finite‐sample performance of the introduced inference procedures.

Suggested Citation

  • Remigijus Leipus & Anne Philippe & Vytautė Pilipauskaitė & Donatas Surgailis, 2020. "Estimating Long Memory in Panel Random‐Coefficient AR(1) Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 520-535, July.
  • Handle: RePEc:bla:jtsera:v:41:y:2020:i:4:p:520-535
    DOI: 10.1111/jtsa.12519
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12519
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J.H.J. Einmahl, 1990. "The empirical distribution function as a tail estimator," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 44(2), pages 79-82, June.
    2. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 475-495.
    3. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," LIDAM Reprints CORE 1594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Dmitrij Celov & Remigijus Leipus & Anne Philippe, 2010. "Asymptotic normality of the mixture density estimator in a disaggregation scheme," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 425-442.
    5. Nedényi, Fanni & Pap, Gyula, 2016. "Iterated scaling limits for aggregation of random coefficient AR(1) and INAR(1) processes," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 16-23.
    6. Zaffaroni, Paolo, 2004. "Contemporaneous aggregation of linear dynamic models in large economies," Journal of Econometrics, Elsevier, vol. 120(1), pages 75-102, May.
    7. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    8. Georges Oppenheim & Marie‐Claude Viano, 2004. "Aggregation of random parameters Ornstein‐Uhlenbeck or AR processes: some convergence results," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 335-350, May.
    9. Beran, Jan & Schützner, Martin & Ghosh, Sucharita, 2010. "From short to long memory: Aggregation and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2432-2442, November.
    10. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    11. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    12. Leipus, Remigijus & Philippe, Anne & Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 121-135.
    13. Baltagi, Badi H., 2015. "The Oxford Handbook of Panel Data," OUP Catalogue, Oxford University Press, number 9780199940042.
    14. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    15. Anne Philippe & Donata Puplinskaite & Donatas Surgailis, 2014. "Contemporaneous Aggregation Of Triangular Array Of Random-Coefficient Ar(1) Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 16-39, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Philippe & Donata Puplinskaite & Donatas Surgailis, 2014. "Contemporaneous Aggregation Of Triangular Array Of Random-Coefficient Ar(1) Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 16-39, January.
    2. Jan Beran & Haiyan Liu & Sucharita Ghosh, 2020. "On aggregation of strongly dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 690-710, September.
    3. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    4. J. Eduardo Vera-Vald'es, 2018. "Nonfractional Memory: Filtering, Antipersistence, and Forecasting," Papers 1801.06677, arXiv.org.
    5. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    6. Ranjit Kumar Paul & Bishal Gurung & Sandipan Samanta, 2015. "Analyzing the Effect of Dual Long Memory Process in Forecasting Agricultural Prices in Different Markets of India," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(4), pages 235-249.
    7. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    8. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    9. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    10. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    12. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    13. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    14. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    15. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    16. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    17. Assaf, Ata, 2016. "MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008," Research in International Business and Finance, Elsevier, vol. 36(C), pages 222-240.
    18. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2014. "Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1011-1035.
    19. Bill Russell & Dooruj Rambaccussing, 2016. "Breaks and the Statistical Process of Inflation: The Case of the ‘Modern’ Phillips Curve," Dundee Discussion Papers in Economics 294, Economic Studies, University of Dundee.
    20. Thornton, Michael A., 2014. "The aggregation of dynamic relationships caused by incomplete information," Journal of Econometrics, Elsevier, vol. 178(P2), pages 342-351.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:41:y:2020:i:4:p:520-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.