IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v22y2010i4p425-442.html
   My bibliography  Save this article

Asymptotic normality of the mixture density estimator in a disaggregation scheme

Author

Listed:
  • Dmitrij Celov
  • Remigijus Leipus
  • Anne Philippe

Abstract

The paper concerns the asymptotic distribution of the mixture density estimator, proposed by Leipus et al. [Leipus, R., Oppenheim, G., Philippe, A., and Viano, M.-C. (2006), ‘Orthogonal Series Density Estimation in a Disaggregation Scheme’, Journal of Statistical Planning and Inference, 136, 2547–2571], in the aggregation/disaggregation problem of random parameter AR(1) process. We prove that, under mild conditions on the (semiparametric) form of the mixture density, the estimator is asymptotically normal. The proof is based on the limit theory for the quadratic form in linear random variables developed by Bhansali et al. [Bhansali, R.J., Giraitis, L., and Kokoszka, P.S. (2007), Approximations and Limit Theory for Quadratic Forms of Linear Processes’, Stochastic Processes and their Applications, 117, 71–95]. The moving average representation of the aggregated process is investigated. A simulation study illustrates the result.

Suggested Citation

  • Dmitrij Celov & Remigijus Leipus & Anne Philippe, 2010. "Asymptotic normality of the mixture density estimator in a disaggregation scheme," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 425-442.
  • Handle: RePEc:taf:gnstxx:v:22:y:2010:i:4:p:425-442
    DOI: 10.1080/10485250903045528
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903045528
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250903045528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Zaffaroni, 2007. "Contemporaneous aggregation of GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 521-544, July.
    2. Terence Tai-Leung Chong, 2006. "The polynomial aggregated AR(1) model," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 98-122, March.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. Zaffaroni, Paolo, 2004. "Contemporaneous aggregation of linear dynamic models in large economies," Journal of Econometrics, Elsevier, vol. 120(1), pages 75-102, May.
    5. Bhansali, R.J. & Giraitis, L. & Kokoszka, P.S., 2007. "Approximations and limit theory for quadratic forms of linear processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 71-95, January.
    6. Georges Oppenheim & Marie‐Claude Viano, 2004. "Aggregation of random parameters Ornstein‐Uhlenbeck or AR processes: some convergence results," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 335-350, May.
    7. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remigijus Leipus & Anne Philippe & Vytautė Pilipauskaitė & Donatas Surgailis, 2020. "Estimating Long Memory in Panel Random‐Coefficient AR(1) Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 520-535, July.
    2. Leipus, Remigijus & Philippe, Anne & Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 121-135.
    3. Anne Philippe & Donata Puplinskaite & Donatas Surgailis, 2014. "Contemporaneous Aggregation Of Triangular Array Of Random-Coefficient Ar(1) Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 16-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Beran & Haiyan Liu & Sucharita Ghosh, 2020. "On aggregation of strongly dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 690-710, September.
    2. Beran, Jan & Schützner, Martin & Ghosh, Sucharita, 2010. "From short to long memory: Aggregation and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2432-2442, November.
    3. Anne Philippe & Donata Puplinskaite & Donatas Surgailis, 2014. "Contemporaneous Aggregation Of Triangular Array Of Random-Coefficient Ar(1) Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 16-39, January.
    4. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    5. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    6. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    7. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    8. J. Eduardo Vera-Vald'es, 2018. "Nonfractional Memory: Filtering, Antipersistence, and Forecasting," Papers 1801.06677, arXiv.org.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    10. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2014. "Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1011-1035.
    11. Remigijus Leipus & Anne Philippe & Vytautė Pilipauskaitė & Donatas Surgailis, 2020. "Estimating Long Memory in Panel Random‐Coefficient AR(1) Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 520-535, July.
    12. Thornton, Michael A., 2014. "The aggregation of dynamic relationships caused by incomplete information," Journal of Econometrics, Elsevier, vol. 178(P2), pages 342-351.
    13. Zaffaroni, Paolo, 2007. "Aggregation and memory of models of changing volatility," Journal of Econometrics, Elsevier, vol. 136(1), pages 237-249, January.
    14. Gil-Alana, Luis A. & Mudida, Robert & Zerbo, Eleazar, 2021. "GDP per capita IN SUB-SAHARAN Africa: A time series approach using long memory," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 175-190.
    15. Bernard Candelpergher & Michel Miniconi & Florian Pelgrin, 2015. "Long-memory process and aggregation of AR(1) stochastic processes: A new characterization," Working Papers hal-01166527, HAL.
    16. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
    17. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    18. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    19. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    20. Fabrizio Coricelli & Roman Horváth, 2010. "Price setting and market structure: an empirical analysis of micro data in Slovakia," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 31(2-3), pages 209-233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:22:y:2010:i:4:p:425-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.