IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/84969.html
   My bibliography  Save this paper

Two Distinct Seasonally Fractionally Differenced Periodic Processes

Author

Listed:
  • Bensalma, Ahmed

Abstract

This article is devoted to study the e¤ects of the S-periodical fractional di¤erencing filter (1-L^S)^Dt . To put this e¤ect in evidence, we have derived the periodic auto-covariance functions of two distinct univariate seasonally fractionally di¤erenced periodic models. A multivariate representation of periodically correlated process is exploited to provide the exact and approximated expression auto-covariance of each models. The distinction between the models is clearly obvious through the expression of periodic auto-covariance function. Besides producing di¤erent autocovariance functions, the two models di¤er in their implications. In the first model, the seasons of the multivariate series are separately fractionally integrated. In the second model, however, the seasons for the univariate series are fractionally co-integrated. On the simulated sample, for each models, with the same parameters, the empirical periodic autocovariance are calculated and graphically represented for illustrating the results and support the comparison between the two models.

Suggested Citation

  • Bensalma, Ahmed, 2018. "Two Distinct Seasonally Fractionally Differenced Periodic Processes," MPRA Paper 84969, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:84969
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/84969/1/MPRA_paper_84969.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung, Ching-Fan, 2002. "Sample Means, Sample Autocovariances, And Linear Regression Of Stationary Multivariate Long Memory Processes," Econometric Theory, Cambridge University Press, vol. 18(1), pages 51-78, February.
    2. G. Oppenheim & M. Haye & M.-C. Viano, 2000. "Long Memory with Seasonal Effects," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 53-68, January.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. Rebecca J. Sela & Clifford M. Hurvich, 2009. "Computationally efficient methods for two multivariate fractionally integrated models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 631-651, November.
    5. Peter Boswijk, H. & Franses, Philip Hans, 1995. "Testing for periodic integration," Economics Letters, Elsevier, vol. 48(3-4), pages 241-248, June.
    6. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    7. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    8. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    9. Boswijk, H. Peter & Franses, Philip Hans & Haldrup, Niels, 1997. "Multiple unit roots in periodic autoregression," Journal of Econometrics, Elsevier, vol. 80(1), pages 167-193, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    2. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
    3. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    4. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    5. Paramsothy Silvapulle, 2001. "A Score Test For Seasonal Fractional Integration And Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 85-104.
    6. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    7. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    8. G. K. Randolph TAN, 2004. "Long Memory in Import and Export Price Inflation and Persistence of Shocks to the Terms of Trade," Econometric Society 2004 Far Eastern Meetings 732, Econometric Society.
    9. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    10. Maria Caporale, Guglielmo & A. Gil-Alana, Luis, 2011. "Multi-Factor Gegenbauer Processes and European Inflation Rates," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 26, pages 386-409.
    11. Wang Shin-Huei & Hafner Christian, 2011. "Estimating Autocorrelations in the Presence of Deterministic Trends," Journal of Time Series Econometrics, De Gruyter, vol. 3(2), pages 1-25, April.
    12. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    13. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    14. Carlos P. Barros & Guglielmo Maria Caporale & Luis A. Gil-Alana, 2014. "Long Memory in Angolan Macroeconomic Series: Mean Reversion versus Explosive Behaviour," African Development Review, African Development Bank, vol. 26(1), pages 59-73, March.
    15. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    16. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    17. Gao Lu Zou & Kwong Wing Chau, 2015. "Determinants and Sustainability of House Prices: The Case of Shanghai, China," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    18. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.
    19. Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process : a Monte Carlo study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00235179, HAL.
    20. Luis A. Gil-Alana & Juan Carlos Cuestas, 2012. "A Non-linear Approach with Long Range Dependence based on Chebyshev Polynomials," Faculty Working Papers 14/12, School of Economics and Business Administration, University of Navarra.

    More about this item

    Keywords

    Periodically correlated process; Fraction integration; seasonal fractional integration; Periodic fractional integration;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:84969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.