IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v25y2004i1p137-154.html
   My bibliography  Save this article

Improved prediction intervals for stochastic process models

Author

Listed:
  • Paolo Vidoni

Abstract

. This paper reviews some recent results on the construction of improved prediction limits for time series models and presents a simple solution based on a fully conditional approach. A prediction limit, expressed as a modification of the estimative one, is obtained so that its conditional and unconditional coverage probability equals the target value to third‐order accuracy. Although the specification of the ancillary statistic is not required, it respects the conditionality principle, to the relevant order of approximation. Moreover, the corresponding predictive density is specified in a relatively simple closed form. Simple examples show the usefulness of this conditional approach to prediction.

Suggested Citation

  • Paolo Vidoni, 2004. "Improved prediction intervals for stochastic process models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 137-154, January.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:1:p:137-154
    DOI: 10.1111/j.1467-9892.2004.00341.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2004.00341.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2004.00341.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Kabaila, 1999. "The Relevance Property For Prediction Intervals," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(6), pages 655-662, November.
    2. Paul Kabaila, 1993. "On Bootstrap Predictive Inference For Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 473-484, September.
    3. Phillips, Peter C. B., 1979. "The sampling distribution of forecasts from a first-order autoregression," Journal of Econometrics, Elsevier, vol. 9(3), pages 241-261, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syuhada, Khreshna & Hakim, Arief & Suprijanto, Djoko & Muchtadi-Alamsyah, Intan & Arbi, Lukman, 2022. "Is Tether a safe haven of safe haven amid COVID-19? An assessment against Bitcoin and oil using improved measures of risk," Resources Policy, Elsevier, vol. 79(C).
    2. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017. "A Justification of Conditional Confidence Intervals," Papers 1710.00643, arXiv.org, revised Jan 2019.
    3. Paolo Vidoni, 2009. "A simple procedure for computing improved prediction intervals for autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 577-590, November.
    4. Giovanni Fonseca & Federica Giummolè & Paolo Vidoni, 2021. "A note on simultaneous calibrated prediction intervals for time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 317-330, March.
    5. Kabaila, Paul & Syuhada, Khreshna, 2010. "The asymptotic efficiency of improved prediction intervals," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1348-1353, September.
    6. Federica Giummolè & Paolo Vidoni, 2010. "Improved prediction limits for a general class of Gaussian models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 483-493, November.
    7. Mulubrhan G. Haile & Lingling Zhang & David J. Olive, 2024. "Predicting Random Walks and a Data-Splitting Prediction Region," Stats, MDPI, vol. 7(1), pages 1-11, January.
    8. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Vidoni, 2009. "A simple procedure for computing improved prediction intervals for autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 577-590, November.
    2. Kabaila, Paul & Syuhada, Khreshna, 2010. "The asymptotic efficiency of improved prediction intervals," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1348-1353, September.
    3. Paul Kabaila & Zhisong He, 2004. "The adjustment of prediction intervals to account for errors in parameter estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 351-358, May.
    4. Gospodinov, Nikolay, 2002. "Median unbiased forecasts for highly persistent autoregressive processes," Journal of Econometrics, Elsevier, vol. 111(1), pages 85-101, November.
    5. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2017. "A Justification of Conditional Confidence Intervals," Research Memorandum 023, Maastricht University, Graduate School of Business and Economics (GSBE).
    6. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    8. Müller, Ulrich K. & Wang, Yulong, 2019. "Nearly weighted risk minimal unbiased estimation," Journal of Econometrics, Elsevier, vol. 209(1), pages 18-34.
    9. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    10. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    11. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
    12. Ching‐Kang Ing & Shu‐Hui Yu, 2003. "On Estimating Conditional Mean‐Squared Prediction Error in Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 401-422, July.
    13. Jean Francois David & Eric Ghysels, 1989. "Y a-t-il des biais systematiques dans les annonces budgetaires canadiennes? (With English summary.)," Canadian Public Policy, University of Toronto Press, vol. 15(3), pages 313-321, September.
    14. Aman Ullah & Yong Bao & Ru Zhang, 2014. "Moment Approximation for Unit Root Models with Nonnormal Errors," Working Papers 201401, University of California at Riverside, Department of Economics.
    15. David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
    16. Stanislav Anatolyev & Nikolay Gospodinov, 2012. "Asymptotics of near unit roots (in Russian)," Quantile, Quantile, issue 10, pages 57-71, December.
    17. Pesaran, M.H. & Pick, A. & Timmermann, A., 2009. "Variable Selection and Inference for Multi-period Forecasting Problems," Cambridge Working Papers in Economics 0901, Faculty of Economics, University of Cambridge.
    18. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    19. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    20. Grigoletto, Matteo, 1998. "Bootstrap prediction intervals for autoregressions: some alternatives," International Journal of Forecasting, Elsevier, vol. 14(4), pages 447-456, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:1:p:137-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.