IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i1d10.1007_s10260-020-00526-6.html
   My bibliography  Save this article

A note on simultaneous calibrated prediction intervals for time series

Author

Listed:
  • Giovanni Fonseca

    (Università di Udine)

  • Federica Giummolè

    (Università Ca’ Foscari Venezia)

  • Paolo Vidoni

    (Università di Udine)

Abstract

This paper deals with simultaneous prediction for time series models. In particular, it presents a simple procedure which gives well-calibrated simultaneous prediction intervals with coverage probability close to the target nominal value. Although the exact computation of the proposed intervals is usually not feasible, an approximation can be easily attained by means of a suitable bootstrap simulation procedure. This new predictive solution is much simpler to compute than those ones already proposed in the literature, based on asymptotic calculations. Applications of the bootstrap calibrated procedure to AR, MA and ARCH models are presented.

Suggested Citation

  • Giovanni Fonseca & Federica Giummolè & Paolo Vidoni, 2021. "A note on simultaneous calibrated prediction intervals for time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 317-330, March.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00526-6
    DOI: 10.1007/s10260-020-00526-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00526-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00526-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Vidoni, 2004. "Improved prediction intervals for stochastic process models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 137-154, January.
    2. Federica Giummolè & Paolo Vidoni, 2010. "Improved prediction limits for a general class of Gaussian models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 483-493, November.
    3. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    4. John P. Nolan & Nalini Ravishanker, 2009. "Simultaneous prediction intervals for ARMA processes with stable innovations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 235-246.
    5. Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
    6. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2008. "On the exact distribution of the maximum of absolutely continuous dependent random variables," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 27-35, January.
    7. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-007 is not listed on IDEAS
    2. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    3. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    4. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    5. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.
    6. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    7. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    8. Mulubrhan G. Haile & Lingling Zhang & David J. Olive, 2024. "Predicting Random Walks and a Data-Splitting Prediction Region," Stats, MDPI, vol. 7(1), pages 1-11, January.
    9. Dag Kolsrud, 2015. "A Time‐Simultaneous Prediction Box for a Multivariate Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 675-693, December.
    10. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," CESifo Working Paper Series 4634, CESifo.
    11. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    12. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    13. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    14. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Régis Barnichon & Geert Mesters, 2020. "Optimal policy perturbations," Economics Working Papers 1716, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Maria Lucia Parrella & Giuseppina Albano & Cira Perna & Michele La Rocca, 2021. "Bootstrap joint prediction regions for sequences of missing values in spatio-temporal datasets," Computational Statistics, Springer, vol. 36(4), pages 2917-2938, December.
    17. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    18. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    19. Pan, Li & Politis, Dimitris N., 2016. "Bootstrap prediction intervals for Markov processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 467-494.
    20. Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
    21. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:1:d:10.1007_s10260-020-00526-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.