IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i17-18p1348-1353.html
   My bibliography  Save this article

The asymptotic efficiency of improved prediction intervals

Author

Listed:
  • Kabaila, Paul
  • Syuhada, Khreshna

Abstract

We consider the Barndorff-Nielsen and Cox (1994, p. 319) method of modifying an estimative prediction interval to obtain an improved prediction interval with better conditional coverage properties. The parameter estimator, on which this improved interval is based, is assumed to have the same asymptotic distribution as the conditional maximum likelihood estimator. This improved interval depends strongly on the asymptotic conditional bias of this estimator, which can be very sensitive to small changes in this estimator. We show, however, that the asymptotic efficiency of this improved prediction interval does not depend on this bias.

Suggested Citation

  • Kabaila, Paul & Syuhada, Khreshna, 2010. "The asymptotic efficiency of improved prediction intervals," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1348-1353, September.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:17-18:p:1348-1353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00125-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corcuera, José M., 2008. "Approximate predictive pivots for autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2685-2691, November.
    2. Phillips, Peter C. B., 1979. "The sampling distribution of forecasts from a first-order autoregression," Journal of Econometrics, Elsevier, vol. 9(3), pages 241-261, February.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Paolo Vidoni, 2004. "Improved prediction intervals for stochastic process models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 137-154, January.
    5. Paul Kabaila & Khreshna Syuhada, 2008. "Improved Prediction Limits For AR(p) and ARCH(p) Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 213-223, March.
    6. Paul Kabaila, 1993. "On Bootstrap Predictive Inference For Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 473-484, September.
    7. Paul Kabaila & Zhisong He, 2004. "The adjustment of prediction intervals to account for errors in parameter estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 351-358, May.
    8. Paolo Vidoni, 2009. "A simple procedure for computing improved prediction intervals for autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 577-590, November.
    9. Paul Kabaila, 1999. "The Relevance Property For Prediction Intervals," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(6), pages 655-662, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017. "A Justification of Conditional Confidence Intervals," Papers 1710.00643, arXiv.org, revised Jan 2019.
    2. Bony Josaphat & Khreshna Syuhada, 2020. "Dependent Conditional Value-at-Risk for Aggregate Risk Models," Papers 2009.02904, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017. "A Justification of Conditional Confidence Intervals," Papers 1710.00643, arXiv.org, revised Jan 2019.
    2. Paolo Vidoni, 2009. "A simple procedure for computing improved prediction intervals for autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 577-590, November.
    3. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.
    4. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Paolo Vidoni, 2004. "Improved prediction intervals for stochastic process models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 137-154, January.
    6. Paul Kabaila & Zhisong He, 2004. "The adjustment of prediction intervals to account for errors in parameter estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 351-358, May.
    7. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    8. Gospodinov, Nikolay, 2002. "Median unbiased forecasts for highly persistent autoregressive processes," Journal of Econometrics, Elsevier, vol. 111(1), pages 85-101, November.
    9. Syuhada, Khreshna & Hakim, Arief & Suprijanto, Djoko & Muchtadi-Alamsyah, Intan & Arbi, Lukman, 2022. "Is Tether a safe haven of safe haven amid COVID-19? An assessment against Bitcoin and oil using improved measures of risk," Resources Policy, Elsevier, vol. 79(C).
    10. Daniel W. Apley & Hyun Cheol Lee, 2010. "The effects of model parameter deviations on the variance of a linearly filtered time series," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(5), pages 460-471, August.
    11. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    12. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    13. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    14. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    15. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    16. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    17. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    18. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    19. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    20. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:17-18:p:1348-1353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.