IDEAS home Printed from https://ideas.repec.org/a/hin/jnijsa/576791.html
   My bibliography  Save this article

Weather Derivatives and Stochastic Modelling of Temperature

Author

Listed:
  • Fred Espen Benth
  • Jūratė Šaltytė Benth

Abstract

We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

Suggested Citation

  • Fred Espen Benth & Jūratė Šaltytė Benth, 2011. "Weather Derivatives and Stochastic Modelling of Temperature," International Journal of Stochastic Analysis, Hindawi, vol. 2011, pages 1-21, July.
  • Handle: RePEc:hin:jnijsa:576791
    DOI: 10.1155/2011/576791
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJSA/2011/576791.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJSA/2011/576791.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2011/576791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    2. Zong, Lu & Ender, Manuela, 2013. "Model Comparison for Temperature-based Weather Derivatives in Mainland China," Conference papers 332293, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    4. Angelos Prentzas & Thomas Bournaris & Stefanos Nastis & Christina Moulogianni & George Vlontzos, 2024. "Enhancing Sustainability through Weather Derivative Option Contracts: A Risk Management Tool in Greek Agriculture," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
    5. Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
    6. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    7. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
    8. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.
    9. Laura Casula & Guglielmo D’Amico & Giovanni Masala & Filippo Petroni, 2020. "Performance estimation of photovoltaic energy production," Letters in Spatial and Resource Sciences, Springer, vol. 13(3), pages 267-285, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijsa:576791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.