IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i4p595-616.html
   My bibliography  Save this article

Locally stationary wavelet fields with application to the modelling and analysis of image texture

Author

Listed:
  • Idris A. Eckley
  • Guy P. Nason
  • Robert L. Treloar

Abstract

Summary. The paper proposes the modelling and analysis of image texture by using an extension of a locally stationary wavelet process model into two dimensions for lattice processes. Such a model permits construction of estimates of a spatially localized spectrum and localized autocovariance which can be used to characterize texture in a multiscale and spatially adaptive way. We provide the necessary theoretical support to show that our two‐dimensional extension is properly defined and has the proper statistical convergence properties. Our use of a statistical model permits us to identify, and correct for, a bias in established texture measures based on non‐decimated wavelet techniques. The method proposed performs nearly as well as optimal Fourier techniques on stationary textures and outperforms them in non‐stationary situations. We illustrate our techniques by using pilled fabric data from a fabric care experiment and simulated tile data.

Suggested Citation

  • Idris A. Eckley & Guy P. Nason & Robert L. Treloar, 2010. "Locally stationary wavelet fields with application to the modelling and analysis of image texture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 595-616, August.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:595-616
    DOI: 10.1111/j.1467-9876.2009.00721.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00721.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00721.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandra M. Schmidt & Anthony O'Hagan, 2003. "Bayesian inference for non‐stationary spatial covariance structure via spatial deformations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 743-758, August.
    2. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    3. Banerjee, Sudipto & Gelfand, Alan E., 2006. "Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1487-1501, December.
    4. Le, Nhu D. & Zidek, James V., 1992. "Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 351-374, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erwan Koch, 2019. "Spatial Risk Measures and Rate of Spatial Diversification," Risks, MDPI, vol. 7(2), pages 1-26, May.
    2. repec:jss:jstsof:43:i03 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    2. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    3. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    4. Debashis Mondal & Donald Percival, 2010. "Wavelet variance analysis for gappy time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(5), pages 943-966, October.
    5. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    6. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    7. Triantafyllopoulos, K. & Nason, G.P., 2009. "A note on state space representations of locally stationary wavelet time series," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 50-54, January.
    8. Yasumasa Matsuda, 2014. "Wavelet Analysis Of Spatio-Temporal Data," TERG Discussion Papers 311, Graduate School of Economics and Management, Tohoku University.
    9. Guy Nason & Kara Stevens, 2015. "Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-24, September.
    10. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    11. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    12. Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
    13. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    14. Clark, Andrew, 2022. "Causality in the aluminum market," Journal of Commodity Markets, Elsevier, vol. 27(C).
    15. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    16. Joaquim Henriques Vianna Neto & Alexandra M. Schmidt & Peter Guttorp, 2014. "Accounting for spatially varying directional effects in spatial covariance structures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 103-122, January.
    17. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    18. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    19. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    20. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:595-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.