IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v65y2003i2p405-423.html
   My bibliography  Save this article

Functional quasi‐likelihood regression models with smooth random effects

Author

Listed:
  • Jeng‐Min Chiou
  • Hans‐Georg Müller
  • Jane‐Ling Wang

Abstract

Summary. We propose a class of semiparametric functional regression models to describe the influence of vector‐valued covariates on a sample of response curves. Each observed curve is viewed as the realization of a random process, composed of an overall mean function and random components. The finite dimensional covariates influence the random components of the eigenfunction expansion through single‐index models that include unknown smooth link and variance functions. The parametric components of the single‐index models are estimated via quasi‐score estimating equations with link and variance functions being estimated nonparametrically. We obtain several basic asymptotic results. The functional regression models proposed are illustrated with the analysis of a data set consisting of egg laying curves for 1000 female Mediterranean fruit‐flies (medflies).

Suggested Citation

  • Jeng‐Min Chiou & Hans‐Georg Müller & Jane‐Ling Wang, 2003. "Functional quasi‐likelihood regression models with smooth random effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 405-423, May.
  • Handle: RePEc:bla:jorssb:v:65:y:2003:i:2:p:405-423
    DOI: 10.1111/1467-9868.00393
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00393
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip T. Reiss & Lei Huang & Pei‐Shien Wu & Huaihou Chen & Stan Colcombe, 2017. "Pointwise influence matrices for functional‐response regression," Biometrics, The International Biometric Society, vol. 73(4), pages 1092-1101, December.
    2. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2012. "Functional linear regression after spline transformation," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 587-601.
    3. John A. D. Aston & Jeng‐Min Chiou & Jonathan P. Evans, 2010. "Linguistic pitch analysis using functional principal component mixed effect models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 297-317, March.
    4. Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.
    5. Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
    6. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    7. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    8. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    9. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    10. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    11. Cardot, Herve & Crambes, Christophe & Kneip, Alois & Sarda, Pascal, 2007. "Smoothing splines estimators in functional linear regression with errors-in-variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4832-4848, June.
    12. Qing-Yan Peng & Jian-Jun Zhou & Nian-Sheng Tang, 2016. "Varying coefficient partially functional linear regression models," Statistical Papers, Springer, vol. 57(3), pages 827-841, September.
    13. Christian Ritz & Jens C. Streibig, 2009. "Functional Regression Analysis of Fluorescence Curves," Biometrics, The International Biometric Society, vol. 65(2), pages 609-617, June.
    14. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2013. "Functional contour regression," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:2:p:405-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.