IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i1p127-144..html
   My bibliography  Save this article

Extremal behaviour of aggregated data with an application to downscaling

Author

Listed:
  • Sebastian Engelke
  • Raphaël De Fondeville
  • Marco Oesting

Abstract

SUMMARY The distribution of spatially aggregated data from a stochastic process $X$ may exhibit tail behaviour different from that of its marginal distributions. For a large class of aggregating functionals $\ell$ we introduce the $\ell$-extremal coefficient, which quantifies this difference as a function of the extremal spatial dependence in $X$. We also obtain the joint extremal dependence for multiple aggregation functionals applied to the same process. Formulae for the $\ell$-extremal coefficients and multivariate dependence structures are derived in important special cases. The results provide a theoretical link between the extremal distribution of the aggregated data and the corresponding underlying process, which we exploit to develop a method for statistical downscaling. We apply our framework to downscale daily temperature maxima in the south of France from a gridded dataset and use our model to generate high-resolution maps of the warmest day during the $2003$ heatwave.

Suggested Citation

  • Sebastian Engelke & Raphaël De Fondeville & Marco Oesting, 2019. "Extremal behaviour of aggregated data with an application to downscaling," Biometrika, Biometrika Trust, vol. 106(1), pages 127-144.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:127-144.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy052
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    2. Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
    3. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:127-144.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.