IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i6d10.1007_s11269-022-03125-0.html
   My bibliography  Save this article

Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches

Author

Listed:
  • Mohammad Nazeri Tahroudi

    (University of Birjand)

  • Rasoul Mirabbasi

    (Shahrekord University)

  • Yousef Ramezani

    (University of Birjand)

  • Farshad Ahmadi

    (Shahid Chamran University of Ahvaz)

Abstract

In this study, two efficient approaches for bivariate simulation are presented, which include meteorological and hydrological variables. For this purpose, the applicability of support vector regression (SVR) model optimized by Ant colony and Copula-GARCH (Generalized Autoregressive Conditional Heteroscedasticity) algorithms were investigated and compared in simulating the river discharge based on total monthly rainfall in Talezang Basin, Iran. Entropy theory was used to select a suitable meteorological station corresponding to a hydrometric station. The vector autoregressive model was also used as the base model in Copula-GARCH simulations. According to the 99% confidence intervals of the simulations, the accuracy of both models was confirmed. The simulation results showed that the Copula-GARCH model was more accurate than the optimized SVR (OSVR) model. Considering the 90% efficiency (NSE=0.90) of the Copula-GARCH approach, the results show a 36% improvement of RMSE statistics by the Copula-GARCH model compared to the OSVR model in simulating the river discharge on a monthly scale. The results also showed that by combining nonlinear ARCH models with the copula-based simulations, the reliability of the simulation results increases, which was also confirmed using the violin plot. The results also showed an increase in the accuracy of the Copula-GARCH model at the minimum and maximum values of the data.

Suggested Citation

  • Mohammad Nazeri Tahroudi & Rasoul Mirabbasi & Yousef Ramezani & Farshad Ahmadi, 2022. "Probabilistic Assessment of Monthly River Discharge using Copula and OSVR Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2027-2043, April.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:6:d:10.1007_s11269-022-03125-0
    DOI: 10.1007/s11269-022-03125-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03125-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03125-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    5. Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
    6. Xinyu Yuan & Jiechen Tang & Wing-Keung Wong & Songsak Sriboonchitta, 2020. "Modeling Co-Movement among Different Agricultural Commodity Markets: A Copula-GARCH Approach," Sustainability, MDPI, vol. 12(1), pages 1-17, January.
    7. Mohammad Nazeri Tahroudi & Yousef Ramezani & Carlo De Michele & Rasoul Mirabbasi, 2020. "A New Method for Joint Frequency Analysis of Modified Precipitation Anomaly Percentage and Streamflow Drought Index Based on the Conditional Density of Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4217-4231, October.
    8. Toshiaki Watanabe, 2012. "Quantile Forecasts Of Financial Returns Using Realized Garch Models," The Japanese Economic Review, Japanese Economic Association, vol. 63(1), pages 68-80, March.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tauchen, George & Zhang, Harold & Liu, Ming, 1996. "Volume, volatility, and leverage: A dynamic analysis," Journal of Econometrics, Elsevier, vol. 74(1), pages 177-208, September.
    2. P. J. Dawson & A. L. Tiffin & B. White, 2000. "Optimal Hedging Ratios for Wheat and Barley at the LIFFE: A GARCH Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(2), pages 147-161, May.
    3. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    4. Mohammad Nazeri-Tahroudi & Yousef Ramezani & Carlo Michele & Rasoul Mirabbasi, 2022. "Bivariate Simulation of Potential Evapotranspiration Using Copula-GARCH Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1007-1024, February.
    5. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    6. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    8. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    9. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
    10. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    11. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    12. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    13. Shih Yung Wei & Jack J. W. Yang, 2011. "The Impact Of Short Sale Restrictions On Stock Volatility: Evidence From Taiwan," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 5(4), pages 89-98.
    14. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    15. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    16. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    17. Kritika Mathur & Nidhi Kaicker & Raghav Gaiha & Katsushi S. Imai & Ganesh Thapa, 2014. "Financialisation of food commodity markets, price surge and volatility: new evidence," Chapters, in: Raghbendra Jha & Raghav Gaiha & Anil B. Deolalikar (ed.), Handbook on Food, chapter 7, pages 149-176, Edward Elgar Publishing.
    18. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    19. Chan, Felix & Marinova, Dora & McAleer, Michael, 2004. "Modelling the asymmetric volatility of electronics patents in the USA," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 169-184.
    20. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:6:d:10.1007_s11269-022-03125-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.