IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i4p1175-1197.html
   My bibliography  Save this article

Semiparametric latent class analysis of recurrent event data

Author

Listed:
  • Wei Zhao
  • Limin Peng
  • John Hanfelt

Abstract

Recurrent event data frequently arise in chronic disease studies, providing rich information on disease progression. The concept of latent class offers a sensible perspective to characterize complex population heterogeneity in recurrent event trajectories that may not be adequately captured by a single regression model. However, the development of latent class methods for recurrent event data has been sparse, typically requiring strong parametric assumptions and involving algorithmic issues. In this work, we investigate latent class analysis of recurrent event data based on flexible semiparametric multiplicative modelling. We derive a robust estimation procedure through novelly adapting the conditional score technique and utilizing the special characteristics of multiplicative intensity modelling. The proposed estimation procedure can be stably and efficiently implemented based on existing computational routines. We provide solid theoretical underpinnings for the proposed method, and demonstrate its satisfactory finite sample performance via extensive simulation studies. An application to a dataset from research participants at Goizueta Alzheimer's Disease Research Center illustrates the practical utility of our proposals.

Suggested Citation

  • Wei Zhao & Limin Peng & John Hanfelt, 2022. "Semiparametric latent class analysis of recurrent event data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1175-1197, September.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:4:p:1175-1197
    DOI: 10.1111/rssb.12499
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12499
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    2. Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
    3. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    4. Donglin Zeng & Lu Mao & D. Y. Lin, 2016. "Maximum likelihood estimation for semiparametric transformation models with interval-censored data," Biometrika, Biometrika Trust, vol. 103(2), pages 253-271.
    5. Xianghua Luo & Chiung-Yu Huang & Lan Wang, 2013. "Quantile Regression for Recurrent Gap Time Data," Biometrics, The International Biometric Society, vol. 69(2), pages 375-385, June.
    6. Ross P. Hilton & Yuchen Zheng & Nicoleta Serban, 2018. "Modeling Heterogeneity in Healthcare Utilization Using Massive Medical Claims Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 111-121, January.
    7. Haiqun Lin & Charles E. McCulloch & Robert A. Rosenheck, 2004. "Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 60(2), pages 295-305, June.
    8. Patrick Mair & Marcus Hudec, 2009. "Multivariate Weibull mixtures with proportional hazard restrictions for dwell‐time‐based session clustering with incomplete data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 619-639, December.
    9. Brian L. Egleston & Robert G. Uzzo & Yu-Ning Wong, 2017. "Latent Class Survival Models Linked by Principal Stratification to Investigate Heterogenous Survival Subgroups Among Individuals With Early-Stage Kidney Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 534-546, April.
    10. Dongbing Lai & Huiping Xu & Daniel Koller & Tatiana Foroud & Sujuan Gao, 2016. "A multivariate finite mixture latent trajectory model with application to dementia studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2503-2523, October.
    11. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    12. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    13. Han, Jun, 2009. "Initial classification of joint data in EM estimation of latent class joint model," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2313-2323, November.
    14. Wedel, M, et al, 1993. "A Latent Class Poisson Regression Model for Heterogeneous Count Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 397-411, Oct.-Dec..
    15. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    16. Kamel Jedidi & Venkatram Ramaswamy & Wayne Desarbo, 1993. "A maximum likelihood method for latent class regression involving a censored dependent variable," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 375-394, September.
    17. Lavancier, F. & Rochet, P., 2016. "A general procedure to combine estimators," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 175-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    2. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    3. Isabelle Archambault & Véronique Dupéré, 2017. "Joint trajectories of behavioral, affective, and cognitive engagement in elementary school," The Journal of Educational Research, Taylor & Francis Journals, vol. 110(2), pages 188-198, March.
    4. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    5. Joanna F. Dipnall & Belinda J. Gabbe & Warwick J. Teague & Ben Beck, 2020. "Identifying Homogeneous Patterns of Injury in Paediatric Trauma Patients to Improve Risk-Adjusted Models of Mortality and Functional Outcomes," IJERPH, MDPI, vol. 17(3), pages 1-20, January.
    6. Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
    7. Janine Stone & Christopher Goemans & Marco Costanigro, 2019. "Variation in Water Demand Responsiveness to Utility Policies and Weather: A Latent-Class Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-33, September.
    8. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Determining the Number of Market Segments Using an Experimental Design," FEP Working Papers 263, Universidade do Porto, Faculdade de Economia do Porto.
    9. Caili Liu & Yong Wei & Yu Ling & E. Scott Huebner & Yifang Zeng & Qin Yang, 2020. "Identifying Trajectories of Chinese High School Students’ Depressive Symptoms: an Application of Latent Growth Mixture Modeling," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 15(3), pages 775-789, July.
    10. Tian, Amy Wei & Meyer, John P. & Ilic-Balas, Tatjana & Espinoza, Jose A. & Pepper, Susan, 2023. "In search of the pseudo-transformational leader: A person-centered approach," Journal of Business Research, Elsevier, vol. 158(C).
    11. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    12. Jumin Park & Debra K. Moser & Kathleen Griffith & Jeffrey R. Harring & Meg Johantgen, 2019. "Exploring Symptom Clusters in People With Heart Failure," Clinical Nursing Research, , vol. 28(2), pages 165-181, February.
    13. Han, Jun, 2009. "Initial classification of joint data in EM estimation of latent class joint model," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2313-2323, November.
    14. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    15. Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
    16. Roberta Adorni & Andrea Greco & Marco D’Addario & Francesco Zanatta & Francesco Fattirolli & Cristina Franzelli & Alessandro Maloberti & Cristina Giannattasio & Patrizia Steca, 2022. "Sense of Coherence Predicts Physical Activity Maintenance and Health-Related Quality of Life: A 3-Year Longitudinal Study on Cardiovascular Patients," IJERPH, MDPI, vol. 19(8), pages 1-14, April.
    17. Kiero Guerra-Peña & Zoilo Emilio García-Batista & Sarah Depaoli & Luis Eduardo Garrido, 2020. "Class enumeration false positive in skew-t family of continuous growth mixture models," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-19, April.
    18. Anindita Chakravarty & Rajdeep Grewal & V. Sambamurthy, 2013. "Information Technology Competencies, Organizational Agility, and Firm Performance: Enabling and Facilitating Roles," Information Systems Research, INFORMS, vol. 24(4), pages 976-997, December.
    19. Heike Heidemeier & Anja Göritz, 2013. "Individual Differences in How Work and Nonwork Life Domains Contribute to Life Satisfaction: Using Factor Mixture Modeling for Classification," Journal of Happiness Studies, Springer, vol. 14(6), pages 1765-1788, December.
    20. Bartolucci Francesco & Murphy Thomas Brendan, 2015. "A finite mixture latent trajectory model for modeling ultrarunners’ behavior in a 24-hour race," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(4), pages 193-203, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:4:p:1175-1197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.