IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i14p2503-2523.html
   My bibliography  Save this article

A multivariate finite mixture latent trajectory model with application to dementia studies

Author

Listed:
  • Dongbing Lai
  • Huiping Xu
  • Daniel Koller
  • Tatiana Foroud
  • Sujuan Gao

Abstract

Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients’ decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set from the National Alzheimer's Coordinating Center to identify cognitive decline patterns among dementia patients.

Suggested Citation

  • Dongbing Lai & Huiping Xu & Daniel Koller & Tatiana Foroud & Sujuan Gao, 2016. "A multivariate finite mixture latent trajectory model with application to dementia studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2503-2523, October.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2503-2523
    DOI: 10.1080/02664763.2016.1141181
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1141181
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1141181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cécile Proust & Hélène Jacqmin-Gadda & Jeremy M. G. Taylor & Julien Ganiayre & Daniel Commenges, 2006. "A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1014-1024, December.
    2. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    3. Yang, Chih-Chien, 2006. "Evaluating latent class analysis models in qualitative phenotype identification," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1090-1104, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Zhao & Limin Peng & John Hanfelt, 2022. "Semiparametric latent class analysis of recurrent event data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1175-1197, September.
    2. Alberto Bucci & Lorenzo Carbonari & Monia Ranalli & Giovanni Trovato, 2019. "Health and Development," CEIS Research Paper 470, Tor Vergata University, CEIS, revised 24 Mar 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    2. Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.
    3. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
    4. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    5. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    6. Alan Crane & Kevin Crotty, 2020. "How Skilled Are Security Analysts?," Journal of Finance, American Finance Association, vol. 75(3), pages 1629-1675, June.
    7. Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
    8. Michael Prendergast & David Huang & Yih-Ing Hser, 2008. "Patterns of Crime and Drug Use Trajectories in Relation to Treatment Initiation and 5-Year Outcomes," Evaluation Review, , vol. 32(1), pages 59-82, February.
    9. Silvia Bacci & Francesco Bartolucci & Giulia Bettin & Claudia Pigini, 2017. "A mixture growth model for migrants' remittances: An application to the German Socio-Economic Panel," Mo.Fi.R. Working Papers 145, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    10. Patrick Sturgis & Louise Sullivan, 2008. "Exploring social mobility with latent trajectory groups," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 65-88, January.
    11. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    12. Zwiers, Merle & van Ham, Maarten & Manley, David, 2016. "Trajectories of Neighborhood Change: Spatial Patterns of Increasing Ethnic Diversity," IZA Discussion Papers 10216, Institute of Labor Economics (IZA).
    13. Bacci, Silvia & Bartolucci, Francesco & Pigini, Claudia & Signorelli, Marcello, 2014. "A finite mixture latent trajectory model for hirings and separations in the labor market," MPRA Paper 59730, University Library of Munich, Germany.
    14. Jennifer Oser, 2017. "Assessing How Participators Combine Acts in Their “Political Tool Kits”: A Person-Centered Measurement Approach for Analyzing Citizen Participation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 235-258, August.
    15. R. A. Burns, 2020. "Age-Related Differences in the Factor Structure of Multiple Wellbeing Indicators in a Large Multinational European Survey," Journal of Happiness Studies, Springer, vol. 21(1), pages 37-52, January.
    16. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    17. Benjamin Agbo & Hussain Al-Aqrabi & Richard Hill & Tariq Alsboui, 2022. "Missing Data Imputation in the Internet of Things Sensor Networks," Future Internet, MDPI, vol. 14(5), pages 1-16, May.
    18. Isabelle Archambault & Véronique Dupéré, 2017. "Joint trajectories of behavioral, affective, and cognitive engagement in elementary school," The Journal of Educational Research, Taylor & Francis Journals, vol. 110(2), pages 188-198, March.
    19. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    20. Zhou, Xingcai & Liu, Xinsheng, 2008. "The EM algorithm for the extended finite mixture of the factor analyzers model," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3939-3953, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2503-2523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.