IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p534-546.html
   My bibliography  Save this article

Latent Class Survival Models Linked by Principal Stratification to Investigate Heterogenous Survival Subgroups Among Individuals With Early-Stage Kidney Cancer

Author

Listed:
  • Brian L. Egleston
  • Robert G. Uzzo
  • Yu-Ning Wong

Abstract

Rates of kidney cancer have been increasing, with small incidental tumors experiencing the fastest growth rates. Much of the increase could be due to increased use of CT scans, MRIs, and ultrasounds for unrelated conditions. Many tumors might never have been detected or become symptomatic in the past. This suggests that many patients might benefit from less aggressive therapy, such as active surveillance by which tumors are surgically removed only if they become sufficiently large. However, it has been difficult for clinicians to identify subgroups of patients for whom treatment might be especially beneficial or harmful. In this work, we use a principal stratification framework to estimate the proportion and characteristics of individuals who have large or small hazard rates of death in two treatment arms. This allows us to assess who might be helped or harmed by aggressive treatment. We also use Weibull mixture models. This work differs from much previous work in that the survival classes upon which principal stratification is based are latent variables. That is, survival class is not an observed variable. We apply this work using Surveillance Epidemiology and End Results-Medicare claims data. Clinicians can use our methods for investigating treatments with heterogenous effects.

Suggested Citation

  • Brian L. Egleston & Robert G. Uzzo & Yu-Ning Wong, 2017. "Latent Class Survival Models Linked by Principal Stratification to Investigate Heterogenous Survival Subgroups Among Individuals With Early-Stage Kidney Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 534-546, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:534-546
    DOI: 10.1080/01621459.2016.1240078
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1240078
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1240078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shepherd, Bryan E. & Gilbert, Peter B. & Lumley, Thomas, 2007. "Sensitivity Analyses Comparing Time-to-Event Outcomes Existing Only in a Subset Selected Postrandomization," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 573-582, June.
    2. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    3. Paolo Frumento & Fabrizia Mealli & Barbara Pacini & Donald B. Rubin, 2012. "Evaluating the Effect of Training on Wages in the Presence of Noncompliance, Nonemployment, and Missing Outcome Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 450-466, June.
    4. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    5. Douglas Hayden & Donna K. Pauler & David Schoenfeld, 2005. "An Estimator for Treatment Comparisons among Survivors in Randomized Trials," Biometrics, The International Biometric Society, vol. 61(1), pages 305-310, March.
    6. Bryan E. Shepherd & Peter B. Gilbert & Yannis Jemiai & Andrea Rotnitzky, 2006. "Sensitivity Analyses Comparing Outcomes Only Existing in a Subset Selected Post-Randomization, Conditional on Covariates, with Application to HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(2), pages 332-342, June.
    7. Patrick Mair & Marcus Hudec, 2009. "Multivariate Weibull mixtures with proportional hazard restrictions for dwell‐time‐based session clustering with incomplete data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 619-639, December.
    8. Imai, Kosuke & Yamamoto, Teppei, 2013. "Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments," Political Analysis, Cambridge University Press, vol. 21(2), pages 141-171, April.
    9. Rick L. Williams, 2000. "A Note on Robust Variance Estimation for Cluster-Correlated Data," Biometrics, The International Biometric Society, vol. 56(2), pages 645-646, June.
    10. Francesca Dominici & Scott L. Zeger & Giovanni Parmigiani & Joanne Katz & Parul Christian, 2006. "Estimating percentile‐specific treatment effects in counterfactual models: a case‐study of micronutrient supplementation, birth weight and infant mortality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 261-280, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Zhao & Limin Peng & John Hanfelt, 2022. "Semiparametric latent class analysis of recurrent event data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1175-1197, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    2. Shanshan Luo & Wei Li & Yangbo He, 2023. "Causal inference with outcomes truncated by death in multiarm studies," Biometrics, The International Biometric Society, vol. 79(1), pages 502-513, March.
    3. Chiba Yasutaka, 2012. "The Large Sample Bounds on the Principal Strata Effect with Application to a Prostate Cancer Prevention Trial," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, May.
    4. VanderWeele, Tyler J., 2008. "Simple relations between principal stratification and direct and indirect effects," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2957-2962, December.
    5. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    6. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    7. Sjolander Arvid & Vansteelandt Stijn & Humphreys Keith, 2010. "A Principal Stratification Approach to Assess the Differences in Prognosis between Cancers Caused by Hormone Replacement Therapy and by Other Factors," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-37, June.
    8. Brian L. Egleston & Daniel O. Scharfstein & Ellen MacKenzie, 2009. "On Estimation of the Survivor Average Causal Effect in Observational Studies When Important Confounders Are Missing Due to Death," Biometrics, The International Biometric Society, vol. 65(2), pages 497-504, June.
    9. Yannis Jemiai & Andrea Rotnitzky & Bryan E. Shepherd & Peter B. Gilbert, 2007. "Semiparametric estimation of treatment effects given base‐line covariates on an outcome measured after a post‐randomization event occurs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 879-901, November.
    10. Dean Follmann & Michael P. Fay & Michael Proschan, 2009. "Chop-Lump Tests for Vaccine Trials," Biometrics, The International Biometric Society, vol. 65(3), pages 885-893, September.
    11. Daniel E. Ho & Mark G. Kelman, 2014. "Does Class Size Affect the Gender Gap? A Natural Experiment in Law," The Journal of Legal Studies, University of Chicago Press, vol. 43(2), pages 291-321.
    12. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg using Principal Stratification," GLO Discussion Paper Series 289, Global Labor Organization (GLO).
    13. Luna Bellani & Michela Bia, 2016. "Intergenerational poverty transmission in Europe: The role of education," Working Paper Series of the Department of Economics, University of Konstanz 2016-02, Department of Economics, University of Konstanz.
    14. Bryan E. Shepherd & Peter B. Gilbert & Yannis Jemiai & Andrea Rotnitzky, 2006. "Sensitivity Analyses Comparing Outcomes Only Existing in a Subset Selected Post-Randomization, Conditional on Covariates, with Application to HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(2), pages 332-342, June.
    15. Sergio I. Prada & David Salkever & Ellen J. MacKenzie, 2012. "Level-I Trauma Center Effects on Return-to-Work Outcomes," Evaluation Review, , vol. 36(2), pages 133-164, April.
    16. Arvid Sjölander & Keith Humphreys & Stijn Vansteelandt & Rino Bellocco & Juni Palmgren, 2009. "Sensitivity Analysis for Principal Stratum Direct Effects, with an Application to a Study of Physical Activity and Coronary Heart Disease," Biometrics, The International Biometric Society, vol. 65(2), pages 514-520, June.
    17. German Blanco & Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "Bounds on Average and Quantile Treatment Effects on Duration Outcomes Under Censoring, Selection, and Noncompliance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 901-920, October.
    18. James Robins & Andrea Rotnitzky & Stijn Vansteelandt, 2007. "Discussions," Biometrics, The International Biometric Society, vol. 63(3), pages 650-653, September.
    19. Myoung-jae Lee, 2017. "Extensive and intensive margin effects in sample selection models: racial effects on wages," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 817-839, June.
    20. Halloran M. Elizabeth & Hudgens Michael G., 2012. "Causal Inference for Vaccine Effects on Infectiousness," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-40, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:534-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.