IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231525.html
   My bibliography  Save this article

Class enumeration false positive in skew-t family of continuous growth mixture models

Author

Listed:
  • Kiero Guerra-Peña
  • Zoilo Emilio García-Batista
  • Sarah Depaoli
  • Luis Eduardo Garrido

Abstract

Growth Mixture Modeling (GMM) has gained great popularity in the last decades as a methodology for longitudinal data analysis. The usual assumption of normally distributed repeated measures has been shown as problematic in real-life data applications. Namely, performing normal GMM on data that is even slightly skewed can lead to an over selection of the number of latent classes. In order to ameliorate this unwanted result, GMM based on the skew t family of continuous distributions has been proposed. This family of distributions includes the normal, skew normal, t, and skew t. This simulation study aims to determine the efficiency of selecting the “true” number of latent groups in GMM based on the skew t family of continuous distributions, using fit indices and likelihood ratio tests. Results show that the skew t GMM was the only model considered that showed fit indices and LRT false positive rates under the 0.05 cutoff value across sample sizes and for normal, and skewed and kurtic data. Simulation results are corroborated by a real educational data application example. These findings favor the development of practical guides of the benefits and risks of using the GMM based on this family of distributions.

Suggested Citation

  • Kiero Guerra-Peña & Zoilo Emilio García-Batista & Sarah Depaoli & Luis Eduardo Garrido, 2020. "Class enumeration false positive in skew-t family of continuous growth mixture models," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0231525
    DOI: 10.1371/journal.pone.0231525
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231525
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231525&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    2. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    3. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    4. Kamel Jedidi & Harsharanjeet S. Jagpal & Wayne S. DeSarbo, 1997. "Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity," Marketing Science, INFORMS, vol. 16(1), pages 39-59.
    5. Neal O. Jeffries, 2003. "A note on 'Testing the number of components in a normal mixture'," Biometrika, Biometrika Trust, vol. 90(4), pages 991-994, December.
    6. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    7. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    2. Jost Reinecke & Daniel Seddig, 2011. "Growth mixture models in longitudinal research," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 415-434, December.
    3. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    4. Sarstedt, Marko & Salcher, André, 2007. "Modellselektion in Finite Mixture PLS-Modellen," Discussion Papers in Business Administration 1394, University of Munich, Munich School of Management.
    5. Headrick, Todd C. & Sheng, Yanyan & Hodis, Flaviu-Adrian, 2007. "Numerical Computing and Graphics for the Power Method Transformation Using Mathematica," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i03).
    6. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    7. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    8. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    9. Mahul, Olivier, 2002. "Hedging Price Risk in the Presence of Crop Yield and Revenue Insurance," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24881, European Association of Agricultural Economists.
    10. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    11. Joanna F. Dipnall & Belinda J. Gabbe & Warwick J. Teague & Ben Beck, 2020. "Identifying Homogeneous Patterns of Injury in Paediatric Trauma Patients to Improve Risk-Adjusted Models of Mortality and Functional Outcomes," IJERPH, MDPI, vol. 17(3), pages 1-20, January.
    12. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    13. Al-Subaihi, Ali A., 2004. "Simulating Correlated Multivariate Pseudorandom Numbers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i04).
    14. Rainer Schlittgen & Marko Sarstedt & Christian M. Ringle, 2020. "Data generation for composite-based structural equation modeling methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 747-757, December.
    15. repec:jss:jstsof:19:i03 is not listed on IDEAS
    16. Hakan Demirtas & Robab Ahmadian & Sema Atis & Fatma Ezgi Can & Ilker Ercan, 2016. "A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization," Computational Statistics, Springer, vol. 31(4), pages 1385-1401, December.
    17. Theo Dijkstra & Karin Schermelleh-Engel, 2014. "Consistent Partial Least Squares for Nonlinear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 585-604, October.
    18. Pasquale Dolce & Cristina Davino & Domenico Vistocco, 2022. "Quantile composite-based path modeling: algorithms, properties and applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 909-949, December.
    19. Williams, John & Temme, Dirk & Hildebrandt, Lutz, 2002. "A Monte Carlo study of structural equation models for finite mixtures," SFB 373 Discussion Papers 2002,48, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. Jumin Park & Debra K. Moser & Kathleen Griffith & Jeffrey R. Harring & Meg Johantgen, 2019. "Exploring Symptom Clusters in People With Heart Failure," Clinical Nursing Research, , vol. 28(2), pages 165-181, February.
    21. Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.