IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v146y2020ics0167947320300165.html
   My bibliography  Save this article

Design optimal sampling plans for functional regression models

Author

Listed:
  • Rha, Hyungmin
  • Kao, Ming-Hung
  • Pan, Rong

Abstract

Functional regression models are widely considered in practice. To make a precise statistical inference, a good sampling schedule for collecting informative functional data is needed. However, there has not been much research on the optimal sampling schedule design for functional regression model so far. To address this design issue, an efficient computational approach is proposed for generating the best sampling plan in the function-on-function linear regression setting. The obtained sampling plan allows a precise estimation of the predictor function and a precise prediction of the response function. The proposed approach can also be applied to identify the optimal sampling plan for the problem with scalar-on-function linear regression model. Through case studies, this approach is demonstrated to outperform the methods proposed in the previous studies.

Suggested Citation

  • Rha, Hyungmin & Kao, Ming-Hung & Pan, Rong, 2020. "Design optimal sampling plans for functional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:csdana:v:146:y:2020:i:c:s0167947320300165
    DOI: 10.1016/j.csda.2020.106925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300165
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Ji & Hans-Georg Müller, 2017. "Optimal designs for longitudinal and functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 859-876, June.
    2. Moein Saleh & Ming-Hung Kao & Rong Pan, 2017. "Design D-optimal event-related functional magnetic resonance imaging experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 73-91, January.
    3. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    4. Ashish Sood & Gareth M. James & Gerard J. Tellis, 2009. "Functional Regression: A New Model for Predicting Market Penetration of New Products," Marketing Science, INFORMS, vol. 28(1), pages 36-51, 01-02.
    5. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    6. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    7. Meihua Wu & Ana Diez†Roux & Trivellore E. Raghunathan & Brisa N. Sánchez, 2018. "FPCA†based method to select optimal sampling schedules that capture between†subject variability in longitudinal studies," Biometrics, The International Biometric Society, vol. 74(1), pages 229-238, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kao, Ming-Hung & Huang, Ping-Han, 2024. "Hybrid exact-approximate design approach for sparse functional data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Ming-Hung & Huang, Ping-Han, 2024. "Hybrid exact-approximate design approach for sparse functional data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    2. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    3. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    4. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    5. Tomáš Rubín & Victor M. Panaretos, 2020. "Functional lagged regression with sparse noisy observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 858-882, November.
    6. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    7. Orlando Joaqui-Barandica & Diego F. Manotas-Duque, 2023. "How do Climate and Macroeconomic Factors Affect the Profitability of the Energy Sector?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 444-454, July.
    8. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    9. Yao, Fang, 2007. "Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 40-56, January.
    10. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    11. Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
    12. Craig, Sarah J.C. & Kenney, Ana M. & Lin, Junli & Paul, Ian M. & Birch, Leann L. & Savage, Jennifer S. & Marini, Michele E. & Chiaromonte, Francesca & Reimherr, Matthew L. & Makova, Kateryna D., 2023. "Constructing a polygenic risk score for childhood obesity using functional data analysis," Econometrics and Statistics, Elsevier, vol. 25(C), pages 66-86.
    13. Liebl, Dominik, 2010. "Modeling hourly Electricity Spot Market Prices as non stationary functional times series," MPRA Paper 25017, University Library of Munich, Germany.
    14. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Caleb Weaver & Luo Xiao & Wenbin Lu, 2023. "Functional data analysis for longitudinal data with informative observation times," Biometrics, The International Biometric Society, vol. 79(2), pages 722-733, June.
    16. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    17. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
    18. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    19. Jimin Ding & Jane-Ling Wang, 2008. "Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data," Biometrics, The International Biometric Society, vol. 64(2), pages 546-556, June.
    20. Haochang Shou & Vadim Zipunnikov & Ciprian M. Crainiceanu & Sonja Greven, 2015. "Structured functional principal component analysis," Biometrics, The International Biometric Society, vol. 71(1), pages 247-257, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:146:y:2020:i:c:s0167947320300165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.