IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p588-d345697.html
   My bibliography  Save this article

Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation

Author

Listed:
  • Eva María Ramos-Ábalos

    (Department of Statistics and Operational Research, Faculty of Science, University of Granada, Avda. Fuentenueva, S/N, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Ramón Gutiérrez-Sánchez

    (Department of Statistics and Operational Research, Faculty of Science, University of Granada, Avda. Fuentenueva, S/N, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Ahmed Nafidi

    (Department of Mathematics and Informatics, LAMSAD, National School of Applied Sciences Berrechid, University of Hassan 1, Avenue de l’université, BP 280 Berrechid, Morocco
    These authors contributed equally to this work.)

Abstract

In this paper, we study a new family of Gompertz processes, defined by the power of the homogeneous Gompertz diffusion process, which we term the powers of the stochastic Gompertz diffusion process. First, we show that this homogenous Gompertz diffusion process is stable, by power transformation, and determine the probabilistic characteristics of the process, i.e., its analytic expression, the transition probability density function and the trend functions. We then study the statistical inference in this process. The parameters present in the model are studied by using the maximum likelihood estimation method, based on discrete sampling, thus obtaining the expression of the likelihood estimators and their ergodic properties. We then obtain the power process of the stochastic lognormal diffusion as the limit of the Gompertz process being studied and go on to obtain all the probabilistic characteristics and the statistical inference. Finally, the proposed model is applied to simulated data.

Suggested Citation

  • Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:588-:d:345697
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. H. Skiadas & A. N. Giovanis, 1997. "A stochastic Bass innovation diffusion model for studying the growth of electricity consumption in Greece," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 13(2), pages 85-101, June.
    2. L. Ferrante & S. Bompadre & L. Possati & L. Leone, 2000. "Parameter Estimation in a Gompertzian Stochastic Model for Tumor Growth," Biometrics, The International Biometric Society, vol. 56(4), pages 1076-1081, December.
    3. Isao Shoji & Tohru Ozaki, 1997. "Comparative study of estimation methods for continuous time stochastic processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(5), pages 485-506, September.
    4. Badurally Adam, N.R. & Elahee, M.K. & Dauhoo, M.Z., 2011. "Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process," Energy, Elsevier, vol. 36(12), pages 6763-6769.
    5. Chang, Jinyuan & Chen, Songxi, 2011. "On the Approximate Maximum Likelihood Estimation for Diffusion Processes," MPRA Paper 46279, University Library of Munich, Germany.
    6. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    7. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2018. "Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors," Mathematics, MDPI, vol. 6(5), pages 1-13, May.
    8. A. Katsamaki & C. H. Skiadas, 1995. "Analytic solution and estimation of parameters on a stochastic exponential model for a technological diffusion process," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 11(1), pages 59-75, March.
    9. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    10. Virginia Giorno & Amelia G. Nobile, 2019. "Restricted Gompertz-Type Diffusion Processes with Periodic Regulation Functions," Mathematics, MDPI, vol. 7(6), pages 1-19, June.
    11. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2019. "A Note on Estimation of Multi-Sigmoidal Gompertz Functions with Random Noise," Mathematics, MDPI, vol. 7(6), pages 1-18, June.
    12. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2006. "Electricity consumption in Morocco: Stochastic Gompertz diffusion analysis with exogenous factors," Applied Energy, Elsevier, vol. 83(10), pages 1139-1151, October.
    13. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    14. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    15. Gutiérrez-Sánchez, R. & Nafidi, A. & Pascual, A. & Ramos-Ábalos, E., 2011. "Three parameter gamma-type growth curve, using a stochastic gamma diffusion model: Computational statistical aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 234-243.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    2. Kevin W. Lu & Phillip J. Paine & Simon P. Preston & Andrew T. A. Wood, 2022. "Approximate maximum likelihood estimation for one‐dimensional diffusions observed on a fine grid," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1085-1114, September.
    3. Varughese, Melvin M., 2013. "Parameter estimation for multivariate diffusion systems," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 417-428.
    4. Osnat Stramer & Jun Yan, 2007. "Asymptotics of an Efficient Monte Carlo Estimation for the Transition Density of Diffusion Processes," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 483-496, December.
    5. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    6. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    7. Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
    8. Golightly, A. & Wilkinson, D.J., 2008. "Bayesian inference for nonlinear multivariate diffusion models observed with error," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1674-1693, January.
    9. Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
    10. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    11. R. Gutiérrez & R. Gutiérrez‐Sánchez & A. Nafidi, 2009. "Modelling and forecasting vehicle stocks using the trends of stochastic Gompertz diffusion models: The case of Spain," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 385-405, May.
    12. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    13. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
    14. Kalogeropoulos, Konstantinos, 2007. "Likelihood-based inference for a class of multivariate diffusions with unobserved paths," LSE Research Online Documents on Economics 31423, London School of Economics and Political Science, LSE Library.
    15. Kalogeropoulos, Konstantinos & Dellaportas, Petros & Roberts, Gareth O., 2007. "Likelihood-based inference for correlated diffusions," MPRA Paper 5696, University Library of Munich, Germany.
    16. Mogens Bladt & Samuel Finch & Michael Sørensen, 2016. "Simulation of multivariate diffusion bridges," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 343-369, March.
    17. Bin Zhu & Peter X.-K. Song & Jeremy M.G. Taylor, 2011. "Stochastic Functional Data Analysis: A Diffusion Model-Based Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1295-1304, December.
    18. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    19. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    20. Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:588-:d:345697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.