IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i6p2110-2157.html
   My bibliography  Save this article

Extension to infinite dimensions of a stochastic second-order model associated with shape splines

Author

Listed:
  • Vialard, François-Xavier

Abstract

Motivated by the development of a probabilistic model for growth of biological shapes in the context of large deformations by diffeomorphisms, we present a stochastic perturbation of the Hamiltonian equations of geodesics on shape spaces. We study the finite-dimensional case of groups of points for which we prove that the strong solutions of the stochastic system exist for all time. We extend the model to the space of parameterized curves and surfaces and we develop a convenient analytical setting to prove a strong convergence result from the finite-dimensional to the infinite-dimensional case. We then present some enhancements of the model.

Suggested Citation

  • Vialard, François-Xavier, 2013. "Extension to infinite dimensions of a stochastic second-order model associated with shape splines," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2110-2157.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:6:p:2110-2157
    DOI: 10.1016/j.spa.2013.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913000215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    2. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    3. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    4. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    5. Iguchi, Yuga & Beskos, Alexandros & Graham, Matthew M., 2024. "Parameter inference for degenerate diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    6. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    7. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    8. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    9. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    10. Dureau, Joseph & Kalogeropoulos, Konstantinos & Baguelin, Marc, 2013. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems," LSE Research Online Documents on Economics 41749, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:6:p:2110-2157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.