IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i2p615-639.html
   My bibliography  Save this article

A dynamic choice model to estimate the user cost of crowding with large‐scale transit data

Author

Listed:
  • Prateek Bansal
  • Daniel Hörcher
  • Daniel J. Graham

Abstract

Efficient mass transit provision should be responsive to the behaviour of passengers. Operators often conduct surveys to elicit passenger perspectives, but these can be expensive to administer and can suffer from hypothetical biases. With the advent of smart card and automated vehicle location data, operators have reliable sources of revealed preference (RP) data that can be utilized to estimate transit riders' valuation of service attributes. To date, effective use of RP data has been limited due to modelling complexities. We propose a dynamic choice model (DCM) for population‐level longitudinal RP data to address prominent challenges. In the DCM, riders are assumed to follow different decision rules (compensatory and inertia/habit) and temporal switching between decision rules based on experience‐based learning is also formulated. We develop an expectation–maximization algorithm to estimate the DCM and apply our model to estimate passenger valuation of crowding. Using large‐scale data of 2 months with over four million daily trips by an Asian metro, our DCM estimates show an increase of 47% in passenger's valuation of travel time under extremely crowded conditions. Furthermore, the average passenger follows the compensatory rule on only 25.5% or fewer trips. These results are valuable for supply‐side decisions of transit operators.

Suggested Citation

  • Prateek Bansal & Daniel Hörcher & Daniel J. Graham, 2022. "A dynamic choice model to estimate the user cost of crowding with large‐scale transit data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 615-639, April.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:2:p:615-639
    DOI: 10.1111/rssa.12804
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12804
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    2. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    3. Swait, Joffre & Adamowicz, Wiktor, 2001. "The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(1), pages 135-148, June.
    4. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    5. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    6. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    7. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    8. Jou, Rong-Chang & Chen, Ke-Hong, 2013. "An application of cumulative prospect theory to freeway drivers’ route choice behaviours," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 123-131.
    9. Stephane Hess & Amanda Stathopoulos & Andrew Daly, 2012. "Allowing for heterogeneous decision rules in discrete choice models: an approach and four case studies," Transportation, Springer, vol. 39(3), pages 565-591, May.
    10. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    11. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    12. Jonathan James, 2017. "MM Algorithm for General Mixed Multinomial Logit Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 841-857, June.
    13. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    14. Prateek Bansal & Roselinde Kessels & Rico Krueger & Daniel J Graham, 2021. "Face masks, vaccination rates and low crowding drive the demand for the London Underground during the COVID-19 pandemic," Papers 2107.02394, arXiv.org.
    15. Tang, Yue & Gao, Song & Ben-Elia, Eran, 2017. "An exploratory study of instance-based learning for route choice with random travel times," Journal of choice modelling, Elsevier, vol. 24(C), pages 22-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Fernanda Guajardo Ortega & Heike Link, 2023. "Estimating Mode Choice Inertia and Price Elasticities after a Price Intervention – Evidence from Three Months of almost Fare-free Public Transport in Germany," Discussion Papers of DIW Berlin 2052, DIW Berlin, German Institute for Economic Research.
    2. Bansal, Prateek & Kessels, Roselinde & Krueger, Rico & Graham, Daniel J., 2022. "Preferences for using the London Underground during the COVID-19 pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 45-60.
    3. Rossetti, Tomás & Daziano, Ricardo A., 2024. "Crowding multipliers on shared transportation in New York City: The effects of COVID-19 and implications for a sustainable future," Transport Policy, Elsevier, vol. 145(C), pages 224-236.
    4. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    5. Heike Link & Dennis Gaus & Neil Murray & Maria Fernanda Guajardo Ortega & Flavien Gervois & Frederik von Waldow & Sofia Eigner, 2023. "Combining GPS Tracking and Surveys for a Mode Choice Model: Processing Data from a Quasi-Natural Experiment in Germany," Discussion Papers of DIW Berlin 2047, DIW Berlin, German Institute for Economic Research.
    6. Anupriya, & Graham, Daniel J. & Bansal, Prateek & Hörcher, Daniel & Anderson, Richard, 2023. "Optimal congestion control strategies for near-capacity urban metros: Informing intervention via fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Chen, Xin & Jiang, Yu & Bláfoss Ingvardson, Jesper & Luo, Xia & Anker Nielsen, Otto, 2023. "I can board, but I’d rather wait: Active boarding delay choice behaviour analysis using smart card data in metro systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    8. Kim, Eui-Jin & Bansal, Prateek, 2024. "A new flexible and partially monotonic discrete choice model," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prateek Bansal & Daniel Horcher & Daniel J. Graham, 2020. "A Dynamic Choice Model with Heterogeneous Decision Rules: Application in Estimating the User Cost of Rail Crowding," Papers 2007.03682, arXiv.org.
    2. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    3. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    4. Rossetti, Tomás & Daziano, Ricardo A., 2024. "Crowding multipliers on shared transportation in New York City: The effects of COVID-19 and implications for a sustainable future," Transport Policy, Elsevier, vol. 145(C), pages 224-236.
    5. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    6. Chen, Xin & Jiang, Yu & Bláfoss Ingvardson, Jesper & Luo, Xia & Anker Nielsen, Otto, 2023. "I can board, but I’d rather wait: Active boarding delay choice behaviour analysis using smart card data in metro systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Hong, Seo-Young & Cho, Shin-Hyung & Park, Ho-Chul, 2024. "Behavioral differences between young adults and elderly travelers concerning the crowding effect on public transit after the COVID-19 pandemic," Research in Transportation Economics, Elsevier, vol. 106(C).
    8. Paudel, Jayash, 2021. "Bus ridership and service reliability: The case of public transportation in Western Massachusetts," Transport Policy, Elsevier, vol. 100(C), pages 98-107.
    9. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. Junya Kumagai & Mihoko Wakamatsu & Shunsuke Managi, 2021. "Do commuters adapt to in-vehicle crowding on trains?," Transportation, Springer, vol. 48(5), pages 2357-2399, October.
    11. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    12. Márquez, Luis & Alfonso A, Julieth V. & Poveda, Juan C., 2019. "In-vehicle crowding: Integrating tangible attributes, attitudes, and perceptions in a choice context between BRT and metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 452-465.
    13. Swait, Joffre, 2023. "Distribution-free estimation of individual parameter logit (IPL) models using combined evolutionary and optimization algorithms," Journal of choice modelling, Elsevier, vol. 47(C).
    14. Svanberg , Lisa & Pyddoke, Roger, 2020. "Policies for on-board crowding in public transportation : a literature review," Working Papers 2020:6, Swedish National Road & Transport Research Institute (VTI).
    15. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos & Cats, Oded, 2019. "The underlying effect of public transport reliability on users’ satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 83-93.
    16. Aghabayk, Kayvan & Esmailpour, Javad & Shiwakoti, Nirajan, 2021. "Effects of COVID-19 on rail passengers’ crowding perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 186-202.
    17. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    18. Gonzalez-Valdes, Felipe & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2022. "Quantifying behavioural difference in latent class models to assess empirical identifiability: Analytical development and application to multiple heuristics," Journal of choice modelling, Elsevier, vol. 43(C).
    19. Ait Ali, Abderrahman & Eliasson, Jonas & Warg, Jennifer, 2022. "Are commuter train timetables consistent with passengers’ valuations of waiting times and in-vehicle crowding?," Transport Policy, Elsevier, vol. 116(C), pages 188-198.
    20. Basnak, Paul & Giesen, Ricardo & Muñoz, Juan Carlos, 2022. "Estimation of crowding factors for public transport during the COVID-19 pandemic in Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 140-156.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:2:p:615-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.