IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v106y2024ics0739885924000581.html
   My bibliography  Save this article

Behavioral differences between young adults and elderly travelers concerning the crowding effect on public transit after the COVID-19 pandemic

Author

Listed:
  • Hong, Seo-Young
  • Cho, Shin-Hyung
  • Park, Ho-Chul

Abstract

After the COVID-19 pandemic, passengers' concerns about crowding on public transit vehicles has increased due to their fear of being infected. Since WHO has announced that the elderly are the most vulnerable to COVID-19, it is important to understand the impact of crowding on the elderly and provide policy implications on public transit vehicles. The aim of this study is to analyze the behavioral differences between young adults and the elderly concerning the crowded conditions on public transit with a stated preference survey in Seoul metropolitan area. Crowding multipliers are estimated to quantify the impedance on crowding based on the mixed logit model. The results indicate that the elderly are more sensitive to crowding on public transit vehicles than younger people, and subway passengers are affected more by crowding than passengers who are using other modes of transit. In addition, it is confirmed that the preference of the elderly for public transit varies according to gender, income, and the purpose of travel. These analysis results can provide implications for setting new policy directions to improve the public hygiene and comfort of elderly people when they use public transit in the post-COVID-19 world.

Suggested Citation

  • Hong, Seo-Young & Cho, Shin-Hyung & Park, Ho-Chul, 2024. "Behavioral differences between young adults and elderly travelers concerning the crowding effect on public transit after the COVID-19 pandemic," Research in Transportation Economics, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:retrec:v:106:y:2024:i:c:s0739885924000581
    DOI: 10.1016/j.retrec.2024.101463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885924000581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2024.101463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cox, Tom & Houdmont, Jonathan & Griffiths, Amanda, 2006. "Rail passenger crowding, stress, health and safety in Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 244-258, March.
    2. Arranz, José M. & Burguillo, Mercedes & Rubio, Jeniffer, 2022. "Are public transport policies influencing the transport behaviour of older people and economic equity? A case study of the Madrid Region," Research in Transportation Economics, Elsevier, vol. 95(C).
    3. Aghabayk, Kayvan & Esmailpour, Javad & Shiwakoti, Nirajan, 2021. "Effects of COVID-19 on rail passengers’ crowding perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 186-202.
    4. Konstantinos Gkiotsalitis & Oded Cats, 2021. "Public transport planning adaption under the COVID-19 pandemic crisis: literature review of research needs and directions," Transport Reviews, Taylor & Francis Journals, vol. 41(3), pages 374-392, May.
    5. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    6. Prasanta K. Sahu & Gajanand Sharma & Anirban Guharoy, 2018. "Commuter travel cost estimation at different levels of crowding in a suburban rail system: a case study of Mumbai," Public Transport, Springer, vol. 10(3), pages 379-398, December.
    7. Jain, Juliet & Lyons, Glenn, 2008. "The gift of travel time," Journal of Transport Geography, Elsevier, vol. 16(2), pages 81-89.
    8. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos & Cats, Oded, 2019. "The underlying effect of public transport reliability on users’ satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 83-93.
    9. de Palma, André & Picard, Nathalie, 2005. "Route choice decision under travel time uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 295-324, May.
    10. Tiznado-Aitken, Ignacio & Lucas, Karen & Muñoz, Juan Carlos & Hurtubia, Ricardo, 2020. "Understanding accessibility through public transport users' experiences: A mixed methods approach," Journal of Transport Geography, Elsevier, vol. 88(C).
    11. Bagdatli, Muhammed Emin Cihangir & Ipek, Fatima, 2022. "Transport mode preferences of university students in post-COVID-19 pandemic," Transport Policy, Elsevier, vol. 118(C), pages 20-32.
    12. Gabriel Dias & Elisabete Arsenio & Paulo Ribeiro, 2021. "The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the Covid-19 Mobility Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    13. Shin, Eun Jin, 2021. "Exploring the causal impact of transit fare exemptions on older adults’ travel behavior: Evidence from the Seoul metropolitan area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 319-338.
    14. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    15. Scorrano, Mariangela & Danielis, Romeo, 2021. "Active mobility in an Italian city: Mode choice determinants and attitudes before and during the Covid-19 emergency," Research in Transportation Economics, Elsevier, vol. 86(C).
    16. Navarrete-Hernandez, Pablo & Rennert, Lindiwe & Balducci, Alessandro, 2023. "An evaluation of the impact of COVID-19 safety measures in public transit spaces on riders' Worry of virus contraction," Transport Policy, Elsevier, vol. 131(C), pages 1-12.
    17. Catherine Sundling, 2015. "Travel Behavior Change in Older Travelers: Understanding Critical Reactions to Incidents Encountered in Public Transport," IJERPH, MDPI, vol. 12(11), pages 1-23, November.
    18. Aaditya, Bh. & Rahul, T.M., 2021. "Psychological impacts of COVID-19 pandemic on the mode choice behaviour: A hybrid choice modelling approach," Transport Policy, Elsevier, vol. 108(C), pages 47-58.
    19. Basu, Debasis & Hunt, John Douglas, 2012. "Valuing of attributes influencing the attractiveness of suburban train service in Mumbai city: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1465-1476.
    20. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    21. Moon-Hyun Kim & Jiwon Lee & Tae-Hyoung Tommy Gim, 2021. "How did travel mode choices change according to Coronavirus Disease 2019? Lessons from Seoul, South Korea," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 25(3), pages 437-454, July.
    22. Mark Wardman & Gerard Whelan, 2011. "Twenty Years of Rail Crowding Valuation Studies: Evidence and Lessons from British Experience," Transport Reviews, Taylor & Francis Journals, vol. 31(3), pages 379-398.
    23. Lars Olsson & Tommy Gärling & Dick Ettema & Margareta Friman & Satoshi Fujii, 2013. "Happiness and Satisfaction with Work Commute," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 111(1), pages 255-263, March.
    24. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    25. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shelat, Sanmay & Cats, Oded & van Cranenburgh, Sander, 2022. "Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 357-371.
    2. Aghabayk, Kayvan & Esmailpour, Javad & Shiwakoti, Nirajan, 2021. "Effects of COVID-19 on rail passengers’ crowding perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 186-202.
    3. Junya Kumagai & Mihoko Wakamatsu & Shunsuke Managi, 2021. "Do commuters adapt to in-vehicle crowding on trains?," Transportation, Springer, vol. 48(5), pages 2357-2399, October.
    4. Márquez, Luis & Alfonso A, Julieth V. & Poveda, Juan C., 2019. "In-vehicle crowding: Integrating tangible attributes, attitudes, and perceptions in a choice context between BRT and metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 452-465.
    5. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    6. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    7. Rossetti, Tomás & Daziano, Ricardo A., 2024. "Crowding multipliers on shared transportation in New York City: The effects of COVID-19 and implications for a sustainable future," Transport Policy, Elsevier, vol. 145(C), pages 224-236.
    8. Prateek Bansal & Daniel Horcher & Daniel J. Graham, 2020. "A Dynamic Choice Model with Heterogeneous Decision Rules: Application in Estimating the User Cost of Rail Crowding," Papers 2007.03682, arXiv.org.
    9. Sanmay Shelat & Oded Cats & Sander van Cranenburgh, 2021. "Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands," Papers 2104.10973, arXiv.org, revised Apr 2022.
    10. Chen, Xin & Jiang, Yu & Bláfoss Ingvardson, Jesper & Luo, Xia & Anker Nielsen, Otto, 2023. "I can board, but I’d rather wait: Active boarding delay choice behaviour analysis using smart card data in metro systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    11. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    12. Varghese, Varun & Moniruzzaman, Md. & Chikaraishi, Makoto, 2023. "Environmental sustainability or equity in welfare? Analysing passenger flows of a mass rapid transit system with heterogeneous demand," Research in Transportation Economics, Elsevier, vol. 97(C).
    13. Paudel, Jayash, 2021. "Bus ridership and service reliability: The case of public transportation in Western Massachusetts," Transport Policy, Elsevier, vol. 100(C), pages 98-107.
    14. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.
    16. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    17. Bansal, Prateek & Kessels, Roselinde & Krueger, Rico & Graham, Daniel J., 2022. "Preferences for using the London Underground during the COVID-19 pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 45-60.
    18. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    19. Prateek Bansal & Daniel Hörcher & Daniel J. Graham, 2022. "A dynamic choice model to estimate the user cost of crowding with large‐scale transit data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 615-639, April.
    20. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:106:y:2024:i:c:s0739885924000581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.