Quarterly multidimensional poverty estimates in Mexico using machine learning algorithms/Estimaciones trimestrales de pobreza multidimensional en México mediante algoritmos de aprendizaje de máquina
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- World Bank, 2020. "Poverty and Shared Prosperity 2020," World Bank Publications - Books, The World Bank Group, number 34496.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Linden McBride & Austin Nichols, 2018.
"Retooling Poverty Targeting Using Out-of-Sample Validation and Machine Learning,"
The World Bank Economic Review, World Bank, vol. 32(3), pages 531-550.
- Mcbride,Linden & Nichols,Austin, 2016. "Retooling poverty targeting using out-of-sample validation and machine learning," Policy Research Working Paper Series 7849, The World Bank.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018.
"Human Decisions and Machine Predictions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
- Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2017. "Human Decisions and Machine Predictions," NBER Working Papers 23180, National Bureau of Economic Research, Inc.
- Pave Sohnesen,Thomas & Stender,Niels, 2016. "Is random forest a superior methodology for predicting poverty ? an empirical assessment," Policy Research Working Paper Series 7612, The World Bank.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020.
"lassopack: Model selection and prediction with regularized regression in Stata,"
Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E, 2019. "lassopack: Model Selection and Prediction with Regularized Regression in Stata," IZA Discussion Papers 12081, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2019. "lassopack: Model selection and prediction with regularized regression in Stata," Papers 1901.05397, arXiv.org.
- Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022.
"Machine learning in the service of policy targeting: The case of public credit guarantees,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
- Monica Andini & Michela Boldrini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Andrea Paladini, 2019. "Machine learning in the service of policy targeting: the case of public credit guarantees," Temi di discussione (Economic working papers) 1206, Bank of Italy, Economic Research and International Relations Area.
- de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
- Alessandra Garbero & Marco Letta, 2022. "Predicting household resilience with machine learning: preliminary cross-country tests," Empirical Economics, Springer, vol. 63(4), pages 2057-2070, October.
- Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
- Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
- Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
- Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023.
"Towards data-driven project design: Providing optimal treatment rules for development projects,"
Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2021. "Towards Data-driven Project design: Providing Optimal Treatment Rules for Development Projects," 2021 Annual Meeting, August 1-3, Austin, Texas 314016, Agricultural and Applied Economics Association.
- Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
- Daoud, Adel & Johansson, Fredrik, 2019. "Estimating Treatment Heterogeneity of International Monetary Fund Programs on Child Poverty with Generalized Random Forest," SocArXiv awfjt, Center for Open Science.
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Anthony Niblett, 2018. "Regulatory Reform in Ontario: Machine Learning and Regulation," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 507, March.
- Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024.
"Predicting dropout from higher education: Evidence from Italy,"
Economic Modelling, Elsevier, vol. 130(C).
- Marco Delogu & Raffaelle Lagravinese & Dimitri Paolini & Giuliano Resce, 2020. "Predicting dropout from higher education: Evidence from Italy," DEM Discussion Paper Series 22-06, Department of Economics at the University of Luxembourg.
- Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021.
"Selecting Directors Using Machine Learning,"
NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3226-3264,
National Bureau of Economic Research, Inc.
- Isil Erel & Léa H Stern & Chenhao Tan & Michael S Weisbach, 2021. "Selecting Directors Using Machine Learning [The role of boards of directors in corporate governance: A conceptual framework and survey]," The Review of Financial Studies, Society for Financial Studies, vol. 34(7), pages 3226-3264.
- Isil Erel & Léa H. Stern & Chenhao Tan & Michael S. Weisbach, 2018. "Selecting Directors Using Machine Learning," NBER Working Papers 24435, National Bureau of Economic Research, Inc.
- Erel, Isil & Stern, Lea Henny & Tan, Chenhao & Weisbach, Michael S., 2018. "Selecting Directors Using Machine Learning," Working Paper Series 2018-05, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
- Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
- Anja Garbely & Elias Steiner, 2023. "Understanding compliance with voluntary sustainability standards: a machine learning approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11209-11239, October.
- Körtner, John & Bonoli, Giuliano, 2021. "Predictive Algorithms in the Delivery of Public Employment Services," SocArXiv j7r8y, Center for Open Science.
- Andrew B. Martinez, 2020.
"Forecast Accuracy Matters for Hurricane Damage,"
Econometrics, MDPI, vol. 8(2), pages 1-24, May.
- Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damages," Working Papers 2020-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
More about this item
Keywords
multidimensional poverty; machine learning; LASSO logistic regression; random forest; support vector machines;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
- D6 - Microeconomics - - Welfare Economics
- I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:emx:esteco:v:38:y:2023:i:1:p:3-68. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ximena Varela (email available below). General contact details of provider: https://edirc.repec.org/data/cecolmx.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.