IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v80y2009i3p561-571.html
   My bibliography  Save this article

An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population

Author

Listed:
  • Bartolucci, Al
  • Bae, Sejong
  • Singh, Karan
  • Griffith, H. Randall

Abstract

The mini mental state examination (MMSE) is a common tool for measuring cognitive decline in Alzhiemer's Disease (AD) subjects. Subjects are usually observed for a specified period of time or until death to determine the trajectory of the decline which for the most part appears to be linear. However, it may be noted that the decline may not be modeled by a single linear model over a specified period of time. There may be a point called a change point where the rate or gradient of the decline may change depending on the length of time of observation. A Bayesian approach is used to model the trajectory and determine an appropriate posterior estimate of the change point as well as the predicted model of decline before and after the change point. Estimates of the appropriate parameters as well as their posterior credible regions or regions of interest are established. Coherent prior to posterior analysis using mainly non-informative priors for the parameters of interest is provided. This approach is applied to an existing AD database.

Suggested Citation

  • Bartolucci, Al & Bae, Sejong & Singh, Karan & Griffith, H. Randall, 2009. "An examination of Bayesian statistical approaches to modeling change in cognitive decline in an Alzheimer's disease population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 561-571.
  • Handle: RePEc:eee:matcom:v:80:y:2009:i:3:p:561-571
    DOI: 10.1016/j.matcom.2009.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475409002882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2009.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    2. Donna K. Pauler & Nan M. Laird, 2000. "A Mixture Model for Longitudinal Data with Application to Assessment of Noncompliance," Biometrics, The International Biometric Society, vol. 56(2), pages 464-472, June.
    3. Francisca Galindo Garre & Aeilko H. Zwinderman & Ronald B. Geskus & Yvo W. J. Sijpkens, 2008. "A joint latent class changepoint model to improve the prediction of time to graft failure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 299-308, January.
    4. Lin H. & Turnbull B. W. & McCulloch C. E. & Slate E. H., 2002. "Latent Class Models for Joint Analysis of Longitudinal Biomarker and Event Process Data: Application to Longitudinal Prostate-Specific Antigen Readings and Prostate Cancer," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 53-65, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van den Hout, Ardo & Muniz-Terrera, Graciela & Matthews, Fiona E., 2013. "Change point models for cognitive tests using semi-parametric maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 684-698.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisca Galindo Garre & Aeilko H. Zwinderman & Ronald B. Geskus & Yvo W. J. Sijpkens, 2008. "A joint latent class changepoint model to improve the prediction of time to graft failure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 299-308, January.
    2. Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
    3. Liu, Yue & Liu, Lei & Zhou, Jianhui, 2015. "Joint latent class model of survival and longitudinal data: An application to CPCRA study," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 40-50.
    4. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    5. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    6. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    7. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    8. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    9. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    10. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    11. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    12. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    13. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    14. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    15. Yangxin Huang & Xiaosun Lu & Jiaqing Chen & Juan Liang & Miriam Zangmeister, 2018. "Joint model-based clustering of nonlinear longitudinal trajectories and associated time-to-event data analysis, linked by latent class membership: with application to AIDS clinical studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 699-718, October.
    16. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    17. De la Cruz-Mesia, Rolando & Quintana, Fernando A. & Marshall, Guillermo, 2008. "Model-based clustering for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1441-1457, January.
    18. Li Zhaoyuan & Tian Maozai, 2017. "Detecting Change-Point via Saddlepoint Approximations," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 48-73, February.
    19. Rosalia Condorelli, 2013. "A Bayesian analysis of suicide data," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 1143-1161, February.
    20. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:80:y:2009:i:3:p:561-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.