IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p290-303.html
   My bibliography  Save this article

Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation

Author

Listed:
  • Michael S. Smith
  • Mohamad A. Khaled

Abstract

Estimation of copula models with discrete margins can be difficult beyond the bivariate case. We show how this can be achieved by augmenting the likelihood with continuous latent variables, and computing inference using the resulting augmented posterior. To evaluate this, we propose two efficient Markov chain Monte Carlo sampling schemes. One generates the latent variables as a block using a Metropolis--Hastings step with a proposal that is close to its target distribution, the other generates them one at a time. Our method applies to all parametric copulas where the conditional copula functions can be evaluated, not just elliptical copulas as in much previous work. Moreover, the copula parameters can be estimated joint with any marginal parameters, and Bayesian selection ideas can be employed. We establish the effectiveness of the estimation method by modeling consumer behavior in online retail using Archimedean and Gaussian copulas. The example shows that elliptical copulas can be poor at modeling dependence in discrete data, just as they can be in the continuous case. To demonstrate the potential in higher dimensions, we estimate 16-dimensional D-vine copulas for a longitudinal model of usage of a bicycle path in the city of Melbourne, Australia. The estimates reveal an interesting serial dependence structure that can be represented in a parsimonious fashion using Bayesian selection of independence pair-copula components. Finally, we extend our results and method to the case where some margins are discrete and others continuous. Supplemental materials for the article are also available online.

Suggested Citation

  • Michael S. Smith & Mohamad A. Khaled, 2012. "Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 290-303, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:290-303
    DOI: 10.1080/01621459.2011.644501
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.644501
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.644501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:290-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.