IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i4p853-877.html
   My bibliography  Save this article

Determinantal point process models and statistical inference

Author

Listed:
  • Frédéric Lavancier
  • Jesper Møller
  • Ege Rubak

Abstract

type="main" xml:id="rssb12096-abs-0001"> Statistical models and methods for determinantal point processes (DPPs) seem largely unexplored. We demonstrate that DPPs provide useful models for the description of spatial point pattern data sets where nearby points repel each other. Such data are usually modelled by Gibbs point processes, where the likelihood and moment expressions are intractable and simulations are time consuming. We exploit the appealing probabilistic properties of DPPs to develop parametric models, where the likelihood and moment expressions can be easily evaluated and realizations can be quickly simulated. We discuss how statistical inference is conducted by using the likelihood or moment properties of DPP models, and we provide freely available software for simulation and statistical inference.

Suggested Citation

  • Frédéric Lavancier & Jesper Møller & Ege Rubak, 2015. "Determinantal point process models and statistical inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 853-877, September.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:4:p:853-877
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2015.77.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric Lavancier & Arnaud Poinas & Rasmus Waagepetersen, 2021. "Adaptive estimating function inference for nonstationary determinantal point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 87-107, March.
    2. Chong Deng & Yongtao Guan & Rasmus P. Waagepetersen & Jingfei Zhang, 2017. "Second‐order quasi‐likelihood for spatial point processes," Biometrics, The International Biometric Society, vol. 73(4), pages 1311-1320, December.
    3. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    4. Ian Flint & Nicolas Privault, 2021. "Computation of Coverage Probabilities in a Spherical Germ-Grain Model," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 491-502, June.
    5. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    6. Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
    7. Christophe Ange Napoléon Biscio & Frédéric Lavancier, 2017. "Contrast Estimation for Parametric Stationary Determinantal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 204-229, March.
    8. Poinas, Arnaud, 2019. "A bound of the β-mixing coefficient for point processes in terms of their intensity functions," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 88-93.
    9. Subhroshekhar Ghosh & Soumendu Sundar Mukherjee, 2022. "Learning with latent group sparsity via heat flow dynamics on networks," Papers 2201.08326, arXiv.org.
    10. Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
    11. Jesper Møller & Ninna Vihrs, 2022. "Should We Condition on the Number of Points When Modelling Spatial Point Patterns?," International Statistical Review, International Statistical Institute, vol. 90(3), pages 551-562, December.
    12. Zhenchong Mo & Lin Gong & Mingren Zhu & Junde Lan, 2024. "The Generative Generic-Field Design Method Based on Design Cognition and Knowledge Reasoning," Sustainability, MDPI, vol. 16(22), pages 1-34, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:4:p:853-877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.