IDEAS home Printed from https://ideas.repec.org/p/ihs/ihsesp/126.html
   My bibliography  Save this paper

Tail-Dependence in Stock-Return Pairs

Author

Listed:
  • Fortin, Ines

    (Department of Economics and Finance, Institute for Advanced Studies, Vienna)

  • Kuzmics, Christoph

    (Faculty of Economics and Politics, University of Cambridge)

Abstract

The empirical joint distribution of return-pairs on stock indices displays high tail-dependence in the lower tail and low tail-dependence in the upper tail. The presence of tail-dependence is not compatible with the assumption of (conditional) joint normality. The presence of asymmetric-tail dependence is not compatible with the assumption of a joint student-t distribution. A general test for one dependence structure versus another via the profile-likelihood is described and employed in a bivariate GARCH model, where the joint distribution of the disturbances is split into its marginals and its copula. The copula used is such that it allows for the presence of lower tail-dependence and for asymmetric tail-dependence, and that it encompasses the normal or t-copula. The model is estimated using bivariate data on a set of European stock indices. We find that the assumption of normal or student-t dependence is easily rejected in favour of an asymmetrically tail-dependent distribution.

Suggested Citation

  • Fortin, Ines & Kuzmics, Christoph, 2002. "Tail-Dependence in Stock-Return Pairs," Economics Series 126, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:126
    as

    Download full text from publisher

    File URL: https://irihs.ihs.ac.at/id/eprint/4252
    File Function: First version, 2002
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Patton, Andrew J, 2001. "Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula," University of California at San Diego, Economics Working Paper Series qt01q7j1s2, Department of Economics, UC San Diego.
    2. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    5. Michael Rockinger & Eric Jondeau, 2001. "Conditional Dependency of Financial Series: An Application of Copulas," Working Papers hal-00601478, HAL.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    8. A. Sancetta & Satchell, S.E., 2001. "Bernstein Approximations to the Copula Function and Portfolio Optimization," Cambridge Working Papers in Economics 0105, Faculty of Economics, University of Cambridge.
    9. Angelos Kanas, 1998. "Volatility spillovers across equity markets: European evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 8(3), pages 245-256.
    10. William B. English & Mico Loretan, 2000. "Evaluating \"correlation breakdowns\" during periods of market volatility," International Finance Discussion Papers 658, Board of Governors of the Federal Reserve System (U.S.).
    11. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    12. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    13. Brian H. Boyer & Michael S. Gibson & Mico Loretan, 1997. "Pitfalls in tests for changes in correlations," International Finance Discussion Papers 597, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    2. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    3. Krämer, Walter & van Kampen, Maarten, 2011. "A simple nonparametric test for structural change in joint tail probabilities," Economics Letters, Elsevier, vol. 110(3), pages 245-247, March.
    4. Sancetta, A., 2005. "Copula Based Monte Carlo Integration in Financial Problems," Cambridge Working Papers in Economics 0506, Faculty of Economics, University of Cambridge.
    5. Magnolia Sosa Castro & Christian Bucio Pacheco & Héctor Eduardo Díaz Rodríguez, 2021. "Extreme Volatility Dependence in Exchange Rate," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 40(82), pages 25-55, February.
    6. Fischer, Matthias J., 2003. "Tailoring copula-based multivariate generalized hyperbolic secant distributions to financial return data: an empirical investigation," Discussion Papers 47/2003, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    7. Lai, YiHao & Tseng, Jen-Ching, 2010. "The role of Chinese stock market in global stock markets: A safe haven or a hedge?," International Review of Economics & Finance, Elsevier, vol. 19(2), pages 211-218, April.
    8. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    9. Dias, Alexandra & Embrechts, Paul, 2010. "Modeling exchange rate dependence dynamics at different time horizons," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1687-1705, December.
    10. Xiao, Qin & Yan, Meilan & Zhang, Dalu, 2023. "Commodity market financialization, herding and signals: An asymmetric GARCH R-vine copula approach," International Review of Financial Analysis, Elsevier, vol. 89(C).
    11. Abberger, Klaus, 2004. "A simple graphical method to explore tail-dependence in stock-return pairs," CoFE Discussion Papers 04/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    12. Filip Žikeš, 2007. "Dependence Structure and Portfolio Diversification on Central European Stock Markets," Working Papers IES 2007/02, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2007.
    13. Marco Valerio Geraci & Tomas Garbaravicius & David Veredas, 2016. "Short Selling in the Tails," Working Papers ECARES ECARES 2016-30, ULB -- Universite Libre de Bruxelles.
    14. Stübinger, Johannes & Mangold, Benedikt & Krauss, Christopher, 2016. "Statistical arbitrage with vine copulas," FAU Discussion Papers in Economics 11/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    15. Giovanni De Luca & Giorgia Rivieccio, 2009. "Archimedean copulae for risk measurement," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(8), pages 907-924.
    16. Dobrić, Jadran & Frahm, Gabriel & Schmid, Friedrich, 2007. "Dependence of stock returns in bull and bear markets," Discussion Papers in Econometrics and Statistics 9/07, University of Cologne, Institute of Econometrics and Statistics.
    17. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    18. YiHao Lai, 2008. "Does Asymmetric Dependence Structure Matter? A Value-at-Risk View," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 7(3), pages 249-268, December.
    19. Knyazev, Alexander & Lepekhin, Oleg & Shemyakin, Arkady, 2016. "Joint distribution of stock indices: Methodological aspects of construction and selection of copula models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 42, pages 30-53.
    20. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
    21. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    22. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    23. Dobric Jadran & Frahm Gabriel & Schmid Friedrich, 2013. "Dependence of Stock Returns in Bull and Bear Markets," Dependence Modeling, De Gruyter, vol. 1(2013), pages 94-110, December.
    24. Geraci, Marco Valerio & Garbaravičius, Tomas & Veredas, David, 2018. "Short selling in extreme events," Journal of Financial Stability, Elsevier, vol. 39(C), pages 90-103.
    25. Arno Onken & Steffen Grünewälder & Matthias H J Munk & Klaus Obermayer, 2009. "Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Francois Chesnay & Eric Jondeau, 2001. "Does Correlation Between Stock Returns Really Increase During Turbulent Periods?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(1), pages 53-80, February.
    5. Gagnon, Louis & Karolyi, G. Andrew, 2006. "Price and Volatility Transmission across Borders," Working Paper Series 2006-5, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    6. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Maria Kasch & Massimiliano Caporin, 2013. "Volatility Threshold Dynamic Conditional Correlations: An International Analysis," Journal of Financial Econometrics, Oxford University Press, vol. 11(4), pages 706-742, September.
    9. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    10. Daniele Massacci, 2017. "Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness," Management Science, INFORMS, vol. 63(9), pages 3072-3089, September.
    11. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    13. Mahfuzul Haque & Imen Kouki, 2009. "Effect of 9/11 on the conditional time-varying equity risk premium: evidence from developed markets," Journal of Risk Finance, Emerald Group Publishing, vol. 10(3), pages 261-276, May.
    14. Christian M. Hafner & Dick van Dijk & Philip Hans Franses, 2006. "Semi-Parametric Modelling of Correlation Dynamics," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 59-103, Emerald Group Publishing Limited.
    15. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    16. Hakim, Abdul & McAleer, Michael, 2009. "Forecasting conditional correlations in stock, bond and foreign exchange markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2830-2846.
    17. Nanying Wang & Jack E. Houston, 2016. "The Co-Movement between Non-GM and GM Soybean Prices in China: Evidence from Dalian Futures Market (2004-2014)," Applied Economics and Finance, Redfame publishing, vol. 3(4), pages 37-47, November.
    18. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    19. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    20. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.

    More about this item

    Keywords

    Value-at-Risk; Copula; Non-normal bivariate GARCH; Asymmetric dependence; Profile likelihood-ratio test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doris Szoncsitz (email available below). General contact details of provider: https://edirc.repec.org/data/deihsat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.