IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i6p1920-1933.html
   My bibliography  Save this article

Evaluation of the environmental sustainability of the inshore great scallop (Pecten maximus) fishery in Galicia

Author

Listed:
  • Antonio Cortés
  • Sara González‐García
  • Amaya Franco‐Uría
  • Maria Teresa Moreira
  • Gumersindo Feijoo

Abstract

Great scallop (Pecten maximus) is a bivalve species belonging to the Pectinidae family that is deeply linked to the well‐known network of pilgrimages in Spain (The Way of Saint James), becoming a gourmet product of the Galician cuisine. The goal of this study was to fill the gaps that currently exist in a specific inventory dedicated to the capture and processing of great scallop, as well as to assess the environmental burdens derived from this system. The construction of a comprehensive life cycle inventory was one of the fundamental stages, gathering primary information from questionnaires filled out by 14 skippers and the manager of the evisceration plant in the port of Cambados. Diesel consumption of the fishing boats was identified as the major contributor to the environmental burdens. Furthermore, electricity consumption in the evisceration plant also stood out as a determinant element in the environmental profile of the product. The integrated GHG emission/protein content correlation placed the scallop in the quadrant of high‐protein content (the highest of the fisheries), but also high environmental impact (mainly due to the high fuel use intensity and low edible yield). It is important to highlight that to date and according to our knowledge, this is the first study that aims to analyze the environmental impacts of the great scallop fishery.

Suggested Citation

  • Antonio Cortés & Sara González‐García & Amaya Franco‐Uría & Maria Teresa Moreira & Gumersindo Feijoo, 2022. "Evaluation of the environmental sustainability of the inshore great scallop (Pecten maximus) fishery in Galicia," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1920-1933, December.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:1920-1933
    DOI: 10.1111/jiec.13153
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13153
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elena Tamburini & Elisa Anna Fano & Giuseppe Castaldelli & Edoardo Turolla, 2019. "Life Cycle Assessment of Oyster Farming in the Po Delta, Northern Italy," Resources, MDPI, vol. 8(4), pages 1-17, October.
    2. Friederike Ziegler & Ulf Winther & Erik Skontorp Hognes & Andreas Emanuelsson & Veronica Sund & Harald Ellingsen, 2013. "The Carbon Footprint of Norwegian Seafood Products on the Global Seafood Market," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 103-116, February.
    3. Elena Tamburini & Edoardo Turolla & Elisa Anna Fano & Giuseppe Castaldelli, 2020. "Sustainability of Mussel ( Mytilus Galloprovincialis ) Farming in the Po River Delta, Northern Italy, Based on a Life Cycle Assessment Approach," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    4. González, Alejandro D. & Frostell, Björn & Carlsson-Kanyama, Annika, 2011. "Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation," Food Policy, Elsevier, vol. 36(5), pages 562-570, October.
    5. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    6. Robert W. R. Parker & Julia L. Blanchard & Caleb Gardner & Bridget S. Green & Klaas Hartmann & Peter H. Tyedmers & Reg A. Watson, 2018. "Fuel use and greenhouse gas emissions of world fisheries," Nature Climate Change, Nature, vol. 8(4), pages 333-337, April.
    7. Friederike Ziegler & Andreas Emanuelsson & John Lucas Eichelsheim & Anna Flysjö & Vaque Ndiaye & Mikkel Thrane, 2011. "Extended Life Cycle Assessment of Southern Pink Shrimp Products Originating in Senegalese Artisanal and Industrial Fisheries for Export to Europe," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 527-538, August.
    8. Cheila Almeida & Sofia Vaz & Friederike Ziegler, 2015. "Environmental Life Cycle Assessment of a Canned Sardine Product from Portugal," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 607-617, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian Vázquez‐Rowe & Robert Parker & Helen Hamilton & Huan Liu, 2022. "Industrial ecology for the oceans," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1842-1846, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheila Almeida & Philippe Loubet & Tamíris Pacheco da Costa & Paula Quinteiro & Jara Laso & David Baptista de Sousa & Ronan Cooney & Sinead Mellett & Guido Sonnemann & Carlos José Rodríguez & Neil Row, 2022. "Packaging environmental impact on seafood supply chains: A review of life cycle assessment studies," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1961-1978, December.
    2. Jesse Sherry & Jennifer Koester, 2020. "Life Cycle Assessment of Aquaculture Stewardship Council Certified Atlantic Salmon ( Salmo salar )," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    3. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    4. Daniela Summa & Edoardo Turolla & Mattia Lanzoni & Elena Tamisari & Giuseppe Castaldelli & Elena Tamburini, 2023. "Life Cycle Assessment (LCA) of Two Different Oyster ( Crassostrea gigas ) Farming Strategies in the Sacca di Goro, Northern Adriatic Sea, Italy," Resources, MDPI, vol. 12(6), pages 1-14, May.
    5. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    6. Friederike Ziegler & Sepideh Jafarzadeh & Erik Skontorp Hognes & Ulf Winther, 2022. "Greenhouse gas emissions of Norwegian seafoods: From comprehensive to simplified assessment," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1908-1919, December.
    7. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    8. Ana Fernández‐Ríos & Sandra Ceballos‐Santos & Jara Laso & Cristina Campos & Jorge Cristóbal & María Margallo & Rubén Aldaco & Israel Ruiz‐Salmón, 2022. "From the sea to the table: The environmental impact assessment of fishing, processing, and end‐of‐life of albacore in Cantabria," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1934-1946, December.
    9. Teea Kortetmäki & Markku Oksanen, 2021. "Is there a convincing case for climate veganism?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(3), pages 729-740, September.
    10. Jordi Guillen & Natacha Carvalho & Griffin Carpenter & Antonio Borriello & Angel Calvo Santos, 2023. "Economic Impact of High Fuel Prices on the EU Fishing Fleet," Sustainability, MDPI, vol. 15(18), pages 1-10, September.
    11. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    12. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Linnea Laestadius & Roni Neff & Colleen Barry & Shannon Frattaroli, 2013. "Meat consumption and climate change: the role of non-governmental organizations," Climatic Change, Springer, vol. 120(1), pages 25-38, September.
    14. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    15. Bauer, Jan M. & Aarestrup, Simon C. & Hansen, Pelle G. & Reisch, Lucia A., 2022. "Nudging more sustainable grocery purchases: Behavioural innovations in a supermarket setting," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    16. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    17. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    18. Jie Huang & Zimin Sun & Pengshu Zhong, 2022. "The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    19. White, Robin R. & Brady, Michael, 2014. "Can consumers’ willingness to pay incentivize adoption of environmental impact reducing technologies in meat animal production?," Food Policy, Elsevier, vol. 49(P1), pages 41-49.
    20. Di Maria, Francesco & Sisani, Federico & Lasagni, Marzio & Borges, Marisa Soares & Gonzales, Thiago H., 2018. "Replacement of energy crops with bio-waste in existing anaerobic digestion plants: An energetic and environmental analysis," Energy, Elsevier, vol. 152(C), pages 202-213.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:1920-1933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.