IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i10p95-d946235.html
   My bibliography  Save this article

Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains

Author

Listed:
  • Sören Lars Nungesser

    (Industrial Ecology Group, Faculty of Environment and Natural Resources, University of Freiburg, D-79106 Freiburg, Germany)

  • Stefan Pauliuk

    (Industrial Ecology Group, Faculty of Environment and Natural Resources, University of Freiburg, D-79106 Freiburg, Germany)

Abstract

The global mining industry generates several billion tons of waste every year. Much of it is stored in liquid form, known as tailings, in large impoundments. Recent dam failures at tailing ponds with catastrophic outcomes have raised public concern, such that industry initiatives and investors are beginning to address the problem. So far, a lack of publicly available data makes an independent and comprehensive risk assessment challenging. We introduce a simple and transparent hazard indicator built from environmental proxy variables and screen a global sample of 112 copper mines for natural hazards regarding tailings dams. In a second step, material footprints of copper for the European Union and five major economies are estimated and compared using a Multi-Regional Input–Output model, shedding light on the regions of origin. Finally, hazard scores are linked to regional copper footprints to identify hotspots in supply chains of final consumption. The most hazardous mines are located in Chile and Peru including some of the world’s largest copper producers. China and the US have the largest copper ore footprints and per capita values in the US were 25 times larger than in India. The United States’ and European footprints are satisfied by domestic extraction to about 66 and 40 percent respectively. Copper from Poland contributes around 19 and 28 percent to supply chains of German and European final demand respectively and, as a consequence, Poland constitutes the main hazard hotspot for Europe’s copper supply chain.

Suggested Citation

  • Sören Lars Nungesser & Stefan Pauliuk, 2022. "Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains," Resources, MDPI, vol. 11(10), pages 1-27, October.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:10:p:95-:d:946235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/10/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/10/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    2. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    3. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    4. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Cacciuttolo & Deyvis Cano, 2023. "Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures," Sustainability, MDPI, vol. 15(6), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc van der Meide & Carina Harpprecht & Stephen Northey & Yongxiang Yang & Bernhard Steubing, 2022. "Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1631-1645, October.
    2. Becker, Jonathon M., 2021. "General equilibrium impacts on the U.S. economy of a disruption to Chinese cobalt supply," Resources Policy, Elsevier, vol. 71(C).
    3. Zhu-Jun Wang & Zhen-Song Chen & Qin Su & Kwai-Sang Chin & Witold Pedrycz & Mirosław J. Skibniewski, 2024. "Enhancing the sustainability and robustness of critical material supply in electrical vehicle market: an AI-powered supplier selection approach," Annals of Operations Research, Springer, vol. 342(1), pages 921-958, November.
    4. Alexander Cunningham, 2024. "Assessing the feasibility of deep-seabed mining of polymetallic nodules in the Area of seabed and ocean floor beyond the limits of national jurisdiction, as a method of alleviating supply-side issues ," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(2), pages 207-226, June.
    5. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    6. Sebastian Ernst Volkmann & Felix Lehnen & Peter A. Kukla, 2019. "Estimating the economics of a mining project on seafloor manganese nodules," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(3), pages 287-306, November.
    7. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    8. Benjamin Jones & Viet Nguyen‐Tien & Robert J. R. Elliott, 2023. "The electric vehicle revolution: Critical material supply chains, trade and development," The World Economy, Wiley Blackwell, vol. 46(1), pages 2-26, January.
    9. Piçarra, Alexandre & Annesley, Irvine R. & Otsuki, Akira & de Waard, Robbert, 2021. "Market assessment of cobalt: Identification and evaluation of supply risk patterns," Resources Policy, Elsevier, vol. 73(C).
    10. Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
    11. Sprecher, Benjamin & Reemeyer, Laurie & Alonso, Elisa & Kuipers, Koen & Graedel, Thomas E., 2017. "How “black swan” disruptions impact minor metals," Resources Policy, Elsevier, vol. 54(C), pages 88-96.
    12. Liu, Sen & Dong, Zhiliang & Ding, Chao & Wang, Tian & Zhang, Yichi, 2020. "Do you need cobalt ore? Estimating potential trade relations through link prediction," Resources Policy, Elsevier, vol. 66(C).
    13. Pizarro Barraza, Felipe & Thiyagarajan, Dhandayuthapani & Ramadoss, Ananthakumar & Manikandan, V.S. & Dhanabalan, Shanmuga Sundar & Abarzúa, Carolina Venegas & Sotomayor Soloaga, Pedro & Campos Nazer,, 2024. "Unlocking the potential: Mining tailings as a source of sustainable nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    14. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    15. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    16. Restrepo, Natalia & Ceballos, Juan Camilo & Uribe, Jorge M., 2023. "Risk spillovers of critical metals firms," Resources Policy, Elsevier, vol. 86(PB).
    17. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    18. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    19. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
    20. Yilanci, Veli & Turkmen, N. Ceren & Shah, Muhammad Ibrahim, 2022. "An empirical investigation of resource curse hypothesis for cobalt," Resources Policy, Elsevier, vol. 78(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:10:p:95-:d:946235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.