IDEAS home Printed from https://ideas.repec.org/a/bla/glopol/v15y2024is7p83-98.html
   My bibliography  Save this article

Social sustainability: Viability analysis of social firms

Author

Listed:
  • María Jesús Segovia‐Vargas
  • María del Mar Camacho‐Miñano
  • Vera Gelashvili

Abstract

Social enterprises are firms that actively create jobs for people with disabilities and reduce social and labour inequalities, thereby participating in the social economy. Due to their importance to society and the work they do towards diversity integration and social sustainability, they have recently attracted much attention in academic literature. For this reason, the main objective of this study was to analyse the survival of social enterprises, identifying key variables that condition their continuity in the market or their failure. The initial sample consisted of 999 social enterprises for the year 2022. The Altman Z‐score and artificial intelligence (AI) algorithms were used to obtain the basic survival patterns. The main findings were that, on average, social enterprises are highly experienced companies and only one‐third of them are at risk of bankruptcy. This means that most of these enterprises can continue their social function. Moreover, the results of return on assets (ROA), equity and debt turnover can predict being at risk of bankruptcy of social enterprises. This study contributes to the scarce academic literature on social enterprises and promotes the existence of such enterprises for social and economic sustainability.

Suggested Citation

  • María Jesús Segovia‐Vargas & María del Mar Camacho‐Miñano & Vera Gelashvili, 2024. "Social sustainability: Viability analysis of social firms," Global Policy, London School of Economics and Political Science, vol. 15(S7), pages 83-98, November.
  • Handle: RePEc:bla:glopol:v:15:y:2024:i:s7:p:83-98
    DOI: 10.1111/1758-5899.13455
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1758-5899.13455
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1758-5899.13455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vera Gelashvili & María-Jesús Segovia-Vargas & María-del-Mar Camacho-Miñano, 2022. "What factors condition the financial viability of sheltered employment centres? Empirical evidence," Review of Managerial Science, Springer, vol. 16(2), pages 459-482, February.
    2. Clyde Eiríkur Hull & Sandra Rothenberg, 2008. "Firm performance: the interactions of corporate social performance with innovation and industry differentiation," Strategic Management Journal, Wiley Blackwell, vol. 29(7), pages 781-789, July.
    3. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    4. Kristjana Jace & Dimitrios Koumanakos & Athanasios Tsagkanos, 2022. "Bankruptcy Prediction in Social Enterprises," Journal of Social Entrepreneurship, Taylor & Francis Journals, vol. 13(2), pages 205-220, May.
    5. Korol, Tomasz, 2013. "Early warning models against bankruptcy risk for Central European and Latin American enterprises," Economic Modelling, Elsevier, vol. 31(C), pages 22-30.
    6. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    7. Bonfanti, Angelo & De Crescenzo, Veronica & Simeoni, Francesca & Loza Adaui, Cristian R., 2024. "Convergences and divergences in sustainable entrepreneurship and social entrepreneurship research: A systematic review and research agenda," Journal of Business Research, Elsevier, vol. 170(C).
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Habib Kachlami & Per Davidsson & Martin Obschonka & Darush Yazdanfar & Anders Lundström, 2021. "The regional employment effects of new social firm entry," Small Business Economics, Springer, vol. 57(3), pages 1221-1241, October.
    10. Alexander Kücher & Stefan Mayr & Christine Mitter & Christine Duller & Birgit Feldbauer-Durstmüller, 2020. "Firm age dynamics and causes of corporate bankruptcy: age dependent explanations for business failure," Review of Managerial Science, Springer, vol. 14(3), pages 633-661, June.
    11. Manuel Rico & Naresh R. Pandit & Francisco Puig, 2021. "SME insolvency, bankruptcy, and survival: an examination of retrenchment strategies," Small Business Economics, Springer, vol. 57(1), pages 111-126, June.
    12. María Jesús Segovia-Vargas & María del Mar Camacho-Miñano & Fernanda Cristina Pedrosa Alberto & Vera Gelashvili, 2021. "Sheltered Employment Centres: Sustainability and Social Value," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    13. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    14. Sanchis, A. & Segovia, M.J. & Gil, J.A. & Heras, A. & Vilar, J.L., 2007. "Rough Sets and the role of the monetary policy in financial stability (macroeconomic problem) and the prediction of insolvency in insurance sector (microeconomic problem)," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1554-1573, September.
    15. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    16. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    2. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    3. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    4. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    5. Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.
    6. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    7. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    8. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    9. David Alaminos & Agustín del Castillo & Manuel Ángel Fernández, 2016. "A Global Model for Bankruptcy Prediction," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-18, November.
    10. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    11. Gila Burde, 2018. "Improved Methods for Predicting the Financial Vulnerability of Nonprofit Organizations," Administrative Sciences, MDPI, vol. 8(1), pages 1-8, February.
    12. Chien-Min Kang & Ming-Chieh Wang & Lin Lin, 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions," IJFS, MDPI, vol. 10(2), pages 1-25, April.
    13. Soumya Ranjan Sethi & Dushyant Ashok Mahadik & Rajkiran V. Bilolikar, 2024. "Exploring Trends and Advancements in Financial Distress Prediction Research: A Bibliometric Study," International Journal of Economics and Financial Issues, Econjournals, vol. 14(1), pages 164-179, January.
    14. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    15. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    16. Hoang Hiep Nguyen & Jean-Laurent Viviani & Sami Ben Jabeur, 2023. "Bankruptcy prediction using machine learning and Shapley additive explanations," Post-Print hal-04223161, HAL.
    17. Andrzej Geise & Magdalena Kuczmarska & Jarosław Pawlowski, 2021. "Corporate Failure Prediction of Construction Companies in Poland: Evidence from Logit Model," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 99-116.
    18. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    20. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:glopol:v:15:y:2024:i:s7:p:83-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.