IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2024-01-16.html
   My bibliography  Save this article

Exploring Trends and Advancements in Financial Distress Prediction Research: A Bibliometric Study

Author

Listed:
  • Soumya Ranjan Sethi

    (Research Scholar, School of Management, National Institute of Technology, Rourkela, India)

  • Dushyant Ashok Mahadik

    (School of Management, National Institute of Technology, Rourkela, India.)

  • Rajkiran V. Bilolikar

    (Centre for Energy Studies, Administrative Staff College of India, Hyderabad, India)

Abstract

Due to the growing complexity and unpredictability of contemporary markets as evidenced by the financial crisis of the past ten years, the field of financial distress prediction (FDP) research is receiving more attention. For creditors, investors, and other stakeholders to make well-informed decisions on their financial relationships with a given entity, financial distress prediction is essential. This paper identified the risk indicators that are the cause of financial distress and latest tools and methods to predict financial distress with identifying the risk management strategies for eradicate the distress condition. In this context, this study explores the landscape of the literature published in this area. We have used systematic and bibliometric approach for studying the existing literature. For the study, we have collected articles from the Scopus database for the period 1985 to 2022. Science mapping technique has been used for the analysis data has been conducted with the help of Vosviewer and Biblioshiny software. Various important component of a literature review like most relevant authors, most relevant sources, keywords co-occurrence network, thematic analysis and others have been explored. The study will help the scholars and future researchers in getting a comprehensive understanding and insights in the concerned field and add to the existing body of literature.

Suggested Citation

  • Soumya Ranjan Sethi & Dushyant Ashok Mahadik & Rajkiran V. Bilolikar, 2024. "Exploring Trends and Advancements in Financial Distress Prediction Research: A Bibliometric Study," International Journal of Economics and Financial Issues, Econjournals, vol. 14(1), pages 164-179, January.
  • Handle: RePEc:eco:journ1:2024-01-16
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijefi/article/download/15472/7731
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijefi/article/view/15472
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cummins, J David & Mahul, Olivier, 2003. "Optimal Insurance with Divergent Beliefs about Insurer Total Default Risk," Journal of Risk and Uncertainty, Springer, vol. 27(2), pages 121-138, October.
    2. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    3. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    4. Mian, Shehzad L & Smith, Clifford W, Jr, 1992. "Accounts Receivable Management Policy: Theory and Evidence," Journal of Finance, American Finance Association, vol. 47(1), pages 169-200, March.
    5. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    6. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    7. Amal Al Ali & Ahmed M. Khedr & Magdi El Bannany & Sakeena Kanakkayil, 2023. "GALSTM-FDP: A Time-Series Modeling Approach Using Hybrid GA and LSTM for Financial Distress Prediction," IJFS, MDPI, vol. 11(1), pages 1-15, February.
    8. Jiang, Cuiqing & Lyu, Ximei & Yuan, Yufei & Wang, Zhao & Ding, Yong, 2022. "Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1086-1099.
    9. J. David Cummins & Mary A. Weiss, 2009. "Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk‐Transfer Solutions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 493-545, September.
    10. John David Cummins & Olivier Mahul, 2003. "Optimal insurance with divergent beliefs about total default risk," Post-Print hal-01952121, HAL.
    11. M.J. Cobo & A.G. López‐Herrera & E. Herrera‐Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    12. Zhao, Qi & Xu, Weijun & Ji, Yucheng, 2023. "Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    13. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    14. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    15. Danielsson, Jon & Jorgensen, Bjorn N. & de Vries, Casper G., 2002. "Incentives for effective risk management," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1407-1425, July.
    16. E.C.M. Noyons & H.F. Moed & M. Luwel, 1999. "Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 50(2), pages 115-131.
    17. Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Importance of accounting and firm-specific market variables for Pakistan’s listed firms," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1545739-154, January.
    18. Hernandez Tinoco, Mario & Wilson, Nick, 2013. "Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 394-419.
    19. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    20. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    21. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    22. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    23. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    24. Chien-Min Kang & Ming-Chieh Wang & Lin Lin, 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions," IJFS, MDPI, vol. 10(2), pages 1-25, April.
    25. Huchang Liao & Ming Tang & Li Luo & Chunyang Li & Francisco Chiclana & Xiao-Jun Zeng, 2018. "A Bibliometric Analysis and Visualization of Medical Big Data Research," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    26. Zhitao Wang & Qiuyan Wang & Zi Nie & Bingcheng Li, 2022. "Corporate financial distress prediction based on controlling shareholder’s equity pledge," Applied Economics Letters, Taylor & Francis Journals, vol. 29(15), pages 1365-1368, September.
    27. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    28. Lagasio, Valentina & Brogi, Marina & Gallucci, Carmen & Santulli, Rosalia, 2023. "May board committees reduce the probability of financial distress? A survival analysis on Italian listed companies," International Review of Financial Analysis, Elsevier, vol. 87(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samrena Jabeen & Ismat Nasim & Furrukh Bashir & David Chaloupský & Ahsan Akbar, 2024. "The Impact of Fossil Fuel Energy, Technological Innovation and Globalization on Tourism Inflows of Top Ten Most Visited Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 664-671, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    2. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    3. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    6. Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Applicability of O-score model for Pakistani firms," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 389-401, April.
    7. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    8. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    9. Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
    10. Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
    11. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    12. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    13. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    14. Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.
    15. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    17. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    18. Fernando Zambrano Farias & María del Carmen Valls Martínez & Pedro Antonio Martín-Cervantes, 2021. "Explanatory Factors of Business Failure: Literature Review and Global Trends," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    19. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    20. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.

    More about this item

    Keywords

    Financial Distress Prediction; Bibliometric Analysis; Forecasting; Financial Distress; Risk;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G40 - Financial Economics - - Behavioral Finance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2024-01-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.