IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v6y2017i1d10.1186_s40008-017-0073-z.html
   My bibliography  Save this article

World trend in energy: an extension to DEA applied to energy and environment

Author

Listed:
  • Toshiyuki Sueyoshi

    (New Mexico Institute of Mining and Technology)

  • Mika Goto

    (Tokyo Institute of Technology)

Abstract

This study proposes a use of data envelopment analysis (DEA) to assess the performance of energy industries. The DEA is a nonparametric approach that does not assume any functional form for performance assessment. The purpose of this study is to discuss how DEA can examine the current energy industries and their trends in the world. The energy is separated into primary and secondary categories. The primary energy is classified into fossil and non-fossil fuels. The fossil fuels include oil, natural gas and coal, while the non-fossil ones include nuclear and renewable energies (e.g., solar, wind, biomass, water and others). Energy consumption is essential for developing economic prosperity in all nations. However, a use of various energy resources usually produces many different types of pollutions (e.g., air, soil and water pollutions), leading to a huge damage on our society and human health. Thus, it is important for us to understand a general trend of world energy when we consider various environmental issues. This study discusses electricity as a representative of secondary energy. It is not easy to maintain a high level of social balance, so-called sustainability between economic development and environmental protection. As the initial step for sustainability development, this study summarizes a general trend of energy whose consumption has been increasing along with an economic development and a population increase in the world. Along with discussing the trend of world energy, this study describes why DEA is useful as one of the methodologies to assess a social balance between economic success and environmental protection by identifying a level of efficiency, later referred to as “unified (operational and environmental) efficiency.” Thus, this study conveys the research necessity of DEA environmental assessment on energy and sustainability from a perspective of supply and demand on energy resources in the world.

Suggested Citation

  • Toshiyuki Sueyoshi & Mika Goto, 2017. "World trend in energy: an extension to DEA applied to energy and environment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-23, December.
  • Handle: RePEc:spr:jecstr:v:6:y:2017:i:1:d:10.1186_s40008-017-0073-z
    DOI: 10.1186/s40008-017-0073-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40008-017-0073-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40008-017-0073-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yuanxin & Ren, Lingzhi & Li, Yanbin & Zhao, Xin-gang, 2015. "The industrial performance of wind power industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 644-655.
    2. Amy H. I. Lee & Chun Yu Lin & He-Yau Kang & Wen Hsin Lee, 2012. "An Integrated Performance Evaluation Model for the Photovoltaics Industry," Energies, MDPI, vol. 5(4), pages 1-21, April.
    3. Patricia Byrnes & Rolf Färe & Shawna Grosskopf & C. A. Knox Lovell, 1988. "The Effect of Unions on Productivity: U.S. Surface Mining of Coal," Management Science, INFORMS, vol. 34(9), pages 1037-1053, September.
    4. Christian von Hirschhausen & Astrid Cullmann & Andreas Kappeler, 2006. "Efficiency analysis of German electricity distribution utilities - non-parametric and parametric tests," Applied Economics, Taylor & Francis Journals, vol. 38(21), pages 2553-2566.
    5. Kulshreshtha, Mudit & Parikh, Jyoti K., 2002. "Study of efficiency and productivity growth in opencast and underground coal mining in India: a DEA analysis," Energy Economics, Elsevier, vol. 24(5), pages 439-453, September.
    6. Fang, Hong & Wu, Junjie & Zeng, Catherine, 2009. "Comparative study on efficiency performance of listed coal mining companies in China and the US," Energy Policy, Elsevier, vol. 37(12), pages 5140-5148, December.
    7. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA radial and non-radial models for unified efficiency under natural and managerial disposability: Theoretical extension by strong complementary slackness conditions," Energy Economics, Elsevier, vol. 34(3), pages 700-713.
    9. Philipp Geymueller, 2009. "Static versus dynamic DEA in electricity regulation: the case of US transmission system operators," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 397-413, December.
    10. Menegaki, Angeliki N., 2013. "Growth and renewable energy in Europe: Benchmarking with data envelopment analysis," Renewable Energy, Elsevier, vol. 60(C), pages 363-369.
    11. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    12. Amy H. I. Lee & He-Yau Kang & Chun-Yu Lin & Kuan-Chin Shen, 2015. "An Integrated Decision-Making Model for the Location of a PV Solar Plant," Sustainability, MDPI, vol. 7(10), pages 1-20, September.
    13. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    14. Barros, Carlos Pestana & Managi, Shunsuke, 2009. "Productivity assessment of Angola's oil blocks," Energy, Elsevier, vol. 34(11), pages 2009-2015.
    15. Rácz, Viktor J. & Vestergaard, Niels, 2016. "Productivity and efficiency measurement of the Danish centralized biogas power sector," Renewable Energy, Elsevier, vol. 92(C), pages 397-404.
    16. Madlener, Reinhard & Antunes, Carlos Henggeler & Dias, Luis C., 2009. "Assessing the performance of biogas plants with multi-criteria and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1084-1094, September.
    17. Vaninsky, Alexander, 2006. "Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis," Energy Economics, Elsevier, vol. 28(3), pages 326-338, May.
    18. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yanan & Hua, Xiaolong, 2024. "The role of carbon taxation in promoting a green economy for sustainability: Optimizing natural resource efficiency," Resources Policy, Elsevier, vol. 91(C).
    2. Toshiyuki Sueyoshi & Mika Goto, 2018. "Difficulties and remedies on DEA environmental assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-20, December.
    3. Kiril Simeonovski & Tamara Kaftandzieva & Gregory Brock, 2021. "Energy Efficiency Management across EU Countries: A DEA Approach," Energies, MDPI, vol. 14(9), pages 1-19, May.
    4. Rana, Aditya & Singh, Siddharth & Bhagat, N.K. & Singh, M.M. & Jadaun, G.P. & Singh, P.K., 2021. "Evaluating the sustainability of a hydropower project in the Himalayas: A case study for resolving legal disputes in tribunals," Renewable Energy, Elsevier, vol. 174(C), pages 894-908.
    5. Bampatsou, Christina & Halkos, George, 2018. "Dynamics of productivity taking into consideration the impact of energy consumption and environmental degradation," Energy Policy, Elsevier, vol. 120(C), pages 276-283.
    6. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    7. Shogo Eguchi & Hirotaka Takayabu & Mitsuki Kaneko & Shigemi Kagawa & Shunichi Hienuki, 2021. "Proposing effective strategies for meeting an environmental regulation with attainable technology improvement targets," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2907-2921, November.
    8. Toshiyuki Sueyoshi & Mika Goto, 2021. "Performance Assessment of Japanese Electricity and Gas Companies during 2002–2018: Three DEA Approaches," Energies, MDPI, vol. 14(6), pages 1-18, March.
    9. June Raymond Leonen Mariano & Mingyu Liao & Herchang Ay, 2021. "Performance Evaluation of Solar PV Power Plants in Taiwan Using Data Envelopment Analysis," Energies, MDPI, vol. 14(15), pages 1-14, July.
    10. Toshiyuki Sueyoshi & Youngbok Ryu, 2020. "Performance Assessment of the Semiconductor Industry: Measured by DEA Environmental Assessment," Energies, MDPI, vol. 13(22), pages 1-24, November.
    11. Harpinder Sandhu, 2021. "Bottom-Up Transformation of Agriculture and Food Systems," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    12. Xiaochun Zhao & Huixin Xu & Qun Sun, 2022. "Research on China’s Carbon Emission Efficiency and Its Regional Differences," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    13. Fei Mo & Derek Wang, 2019. "Environmental Sustainability of Road Transport in OECD Countries," Energies, MDPI, vol. 12(18), pages 1-14, September.
    14. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    15. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    16. Mohsin, Muhammad & Ullah, Hafeez & Iqbal, Nadeem & Iqbal, Wasim & Taghizadeh-Hesary, Farhad, 2021. "How external debt led to economic growth in South Asia: A policy perspective analysis from quantile regression," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 423-437.
    17. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    3. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale on U.S. fossil fuel power plants: Radial and non-radial approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 34(6), pages 2240-2259.
    5. Sueyoshi, Toshiyuki & Wang, Derek, 2018. "DEA environmental assessment on US petroleum industry: Non-radial approach with translation invariance in time horizon," Energy Economics, Elsevier, vol. 72(C), pages 276-289.
    6. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    7. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    8. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Li, Aijun & Wang, Daoping, 2017. "Methodological comparison among radial, non-radial and intermediate approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 67(C), pages 439-453.
    10. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models," Energy Economics, Elsevier, vol. 34(6), pages 1854-1863.
    11. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    12. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors," Energy Economics, Elsevier, vol. 42(C), pages 299-312.
    14. Biswaranjita Mahapatra & Chandan Bhar & Sandeep Mondal, 2020. "Performance Assessment Based on the Relative Efficiency of Indian Opencast Coal Mines Using Data Envelopment Analysis and Malmquist Productivity Index," Energies, MDPI, vol. 13(18), pages 1-21, September.
    15. Sueyoshi, Toshiyuki & Wang, Derek, 2014. "Radial and non-radial approaches for environmental assessment by Data Envelopment Analysis: Corporate sustainability and effective investment for technology innovation," Energy Economics, Elsevier, vol. 45(C), pages 537-551.
    16. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    17. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    19. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    20. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:6:y:2017:i:1:d:10.1186_s40008-017-0073-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.