IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v14y2022i1d10.1007_s12561-021-09318-2.html
   My bibliography  Save this article

Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing

Author

Listed:
  • Hui Quan

    (Biostatistics and Programming)

  • Xiaofei Chen

    (Biostatistics and Programming)

  • Xun Chen

    (Biostatistics and Programming)

  • Xiaodong Luo

    (Biostatistics and Programming)

Abstract

Applications of Bayesian designs allow the borrowing of the strength of historical information and become more and more attractive in new drug developments. Nonetheless, according to the FDA guidance issued in 2020, Bayesian designs are classified as complex innovative designs that have rarely been used to provide substantial evidence of effectiveness in new drug applications. Moreover, as the historical data have already been observed and fixed, a question which arises is whether we should treat the Bayesian analysis as a conditional or unconditional analysis. Basically, it is essential to understand the frequentist operating characteristics of a Bayesian design either theoretically or through simulation in order to appropriately assess the right type I error probability and apply it to a clinical trial. In this research, we use a relatively simple setting of a normal distribution for the study endpoint to illustrate and compare the conditional and unconditional Bayesian analysis. Both scenarios of borrowing historical information of treatment effect and historical control data are considered. The thinking is applicable to the other settings or endpoints through the asymptotic normality of the distributions for the estimators of either the within or between treatment effects. Simulations are conducted to evaluate the characteristics of the methods.

Suggested Citation

  • Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
  • Handle: RePEc:spr:stabio:v:14:y:2022:i:1:d:10.1007_s12561-021-09318-2
    DOI: 10.1007/s12561-021-09318-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-021-09318-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-021-09318-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riko Kelter, 2021. "Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality," Computational Statistics, Springer, vol. 36(2), pages 1263-1288, June.
    2. Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
    3. S. K. Sahu & T. M. F. Smith, 2006. "A Bayesian method of sample size determination with practical applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 235-253, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lanju Zhang & Naitee Ting, 2022. "Introduction to Special Issue on Leveraging External Data to Improve Trial Efficiency," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 193-196, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    2. Boris G. Zaslavsky, 2013. "Bayesian Hypothesis Testing in Two-Arm Trials with Dichotomous Outcomes," Biometrics, The International Biometric Society, vol. 69(1), pages 157-163, March.
    3. Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
    4. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    5. Yimei Li & Ying Yuan, 2020. "PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials," Biometrics, The International Biometric Society, vol. 76(4), pages 1364-1373, December.
    6. David Kaplan & Jianshen Chen & Sinan Yavuz & Weicong Lyu, 2023. "Bayesian Dynamic Borrowing of Historical Information with Applications to the Analysis of Large-Scale Assessments," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 1-30, March.
    7. Chenguang Wang & Min Lin & Gary L. Rosner & Guoxing Soon, 2023. "A Bayesian model with application for adaptive platform trials having temporal changes," Biometrics, The International Biometric Society, vol. 79(2), pages 1446-1458, June.
    8. Chenghao Chu & Bingming Yi, 2021. "Dynamic historical data borrowing using weighted average," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1259-1280, November.
    9. Alexander Kaizer & John Kittelson, 2020. "Discussion on “Predictively Consistent Prior Effective Sample Sizes” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan," Biometrics, The International Biometric Society, vol. 76(2), pages 588-590, June.
    10. Sidi Wang & Kelley M. Kidwell & Satrajit Roychoudhury, 2023. "Dynamic enrichment of Bayesian small‐sample, sequential, multiple assignment randomized trial design using natural history data: a case study from Duchenne muscular dystrophy," Biometrics, The International Biometric Society, vol. 79(4), pages 3612-3623, December.
    11. Chen, Nan & Carlin, Bradley P. & Hobbs, Brian P., 2018. "Web-based statistical tools for the analysis and design of clinical trials that incorporate historical controls," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 50-68.
    12. Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
    13. Pierpaolo Brutti & Fulvio Santis & Stefania Gubbiotti, 2014. "Bayesian-frequentist sample size determination: a game of two priors," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 133-151, August.
    14. Jing Zhang & Ainsley Helling & A. John Bailer, 2024. "Comparing Methods for Determining Power Priors Based on Different Congruence Measures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 516-535, September.
    15. Andrea Arfè & Brian Alexander & Lorenzo Trippa, 2021. "Optimality of testing procedures for survival data in the nonproportional hazards setting," Biometrics, The International Biometric Society, vol. 77(2), pages 587-598, June.
    16. Elizabeth G. Reisman & Javier Botella & Cheng Huang & Ralf B. Schittenhelm & David A. Stroud & Cesare Granata & Owala S. Chandrasiri & Georg Ramm & Viola Oorschot & Nikeisha J. Caruana & David J. Bish, 2024. "Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Armando Turchetta & Erica E. M. Moodie & David A. Stephens & Sylvie D. Lambert, 2023. "Bayesian sample size calculations for comparing two strategies in SMART studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2489-2502, September.
    18. Chen Li & Haitao Pan, 2020. "A phase I dose-finding design with incorporation of historical information and adaptive shrinking boundaries," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    19. Md. Tuhin Sheikh & Ming-Hui Chen & Jonathan A. Gelfond & Joseph G. Ibrahim, 2022. "A Power Prior Approach for Leveraging External Longitudinal and Competing Risks Survival Data Within the Joint Modeling Framework," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 318-336, July.
    20. Ali Karimnezhad & Ahmad Parsian, 2018. "Most stable sample size determination in clinical trials," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 437-454, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:14:y:2022:i:1:d:10.1007_s12561-021-09318-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.