PA‐CRM: A continuous reassessment method for pediatric phase I oncology trials with concurrent adult trials
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13217
Download full text from publisher
References listed on IDEAS
- Haitao Pan & Ying Yuan & Jielai Xia, 2017. "A calibrated power prior approach to borrow information from historical data with application to biosimilar clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 979-996, November.
- Suyu Liu & Ying Yuan, 2015. "Bayesian optimal interval designs for phase I clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(3), pages 507-523, April.
- Brian P. Hobbs & Bradley P. Carlin & Sumithra J. Mandrekar & Daniel J. Sargent, 2011. "Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(3), pages 1047-1056, September.
- Ibrahim J.G. & Chen M-H. & Sinha D., 2003. "On Optimality Properties of the Power Prior," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 204-213, January.
- Yin, Guosheng & Yuan, Ying, 2009. "Bayesian Model Averaging Continual Reassessment Method in Phase I Clinical Trials," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 954-968.
- Bryan M. Fellman & Ying Yuan, 2015. "Bayesian optimal interval design for phase I oncology clinical trials," Stata Journal, StataCorp LP, vol. 15(1), pages 110-120, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen Li & Haitao Pan, 2020. "A phase I dose-finding design with incorporation of historical information and adaptive shrinking boundaries," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
- Chenghao Chu & Bingming Yi, 2021. "Dynamic historical data borrowing using weighted average," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1259-1280, November.
- Thomas A. Murray & Brian P. Hobbs & Theodore C. Lystig & Bradley P. Carlin, 2014. "Semiparametric Bayesian commensurate survival model for post-market medical device surveillance with non-exchangeable historical data," Biometrics, The International Biometric Society, vol. 70(1), pages 185-191, March.
- Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
- Qingyang Liu & Junxian Geng & Frank Fleischer & Qiqi Deng, 2022. "Efficacy-Driven Dose Finding with Toxicity Control in Phase I Oncology Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 413-431, December.
- Stavros Nikolakopoulos & Ingeborg van der Tweel & Kit C. B. Roes, 2018. "Dynamic borrowing through empirical power priors that control type I error," Biometrics, The International Biometric Society, vol. 74(3), pages 874-880, September.
- Deborah Plana & Geoffrey Fell & Brian M. Alexander & Adam C. Palmer & Peter K. Sorger, 2022. "Cancer patient survival can be parametrized to improve trial precision and reveal time-dependent therapeutic effects," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Chenguang Wang & Min Lin & Gary L. Rosner & Guoxing Soon, 2023. "A Bayesian model with application for adaptive platform trials having temporal changes," Biometrics, The International Biometric Society, vol. 79(2), pages 1446-1458, June.
- Tianjian Zhou & Wentian Guo & Yuan Ji, 2020. "PoD-TPI: Probability-of-Decision Toxicity Probability Interval Design to Accelerate Phase I Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 124-145, July.
- Liyun Jiang & Lei Nie & Ying Yuan, 2023. "Elastic priors to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(1), pages 49-60, March.
- Yu-Fang Chien & Haiming Zhou & Timothy Hanson & Theodore Lystig, 2023. "Informative g -Priors for Mixed Models," Stats, MDPI, vol. 6(1), pages 1-23, January.
- Md. Tuhin Sheikh & Ming-Hui Chen & Jonathan A. Gelfond & Joseph G. Ibrahim, 2022. "A Power Prior Approach for Leveraging External Longitudinal and Competing Risks Survival Data Within the Joint Modeling Framework," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 318-336, July.
- Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
- Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
- Thomas M. Braun, 2018. "Motivating sample sizes in adaptive Phase I trials via Bayesian posterior credible intervals," Biometrics, The International Biometric Society, vol. 74(3), pages 1065-1071, September.
- Hui Quan & Xiaofei Chen & Xun Chen & Xiaodong Luo, 2022. "Assessments of Conditional and Unconditional Type I Error Probabilities for Bayesian Hypothesis Testing with Historical Data Borrowing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 139-157, April.
- Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
- Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
- Lanju Zhang & Zailong Wang & Li Wang & Lu Cui & Jeremy Sokolove & Ivan Chan, 2022. "A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 216-236, July.
- Mingyang Shan & Douglas Faries & Andy Dang & Xiang Zhang & Zhanglin Cui & Kristin M. Sheffield, 2022. "A Simulation-Based Evaluation of Statistical Methods for Hybrid Real-World Control Arms in Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 259-284, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1364-1373. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.