A penalized likelihood method for nonseparable space–time generalized additive models
Author
Abstract
Suggested Citation
DOI: 10.1007/s10182-017-0309-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
- Simon N. Wood & Yannig Goude & Simon Shaw, 2015. "Generalized additive models for large data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 139-155, January.
- Thomas Kneib & Torsten Hothorn & Gerhard Tutz, 2009. "Variable Selection and Model Choice in Geoadditive Regression Models," Biometrics, The International Biometric Society, vol. 65(2), pages 626-634, June.
- Augustin, Nicole H. & Musio, Monica & von Wilpert, Klaus & Kublin, Edgar & Wood, Simon N. & Schumacher, Martin, 2009. "Modeling Spatiotemporal Forest Health Monitoring Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 899-911.
- Huaihou Chen & Yuanjia Wang & Myunghee Cho Paik & H. Alex Choi, 2013. "A Marginal Approach to Reduced-Rank Penalized Spline Smoothing With Application to Multilevel Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1216-1229, December.
- Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
- Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
- Michael L. Stein, 2005. "Statistical methods for regular monitoring data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 667-687, November.
- Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
- X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
- Helen Parise & M. P. Wand & David Ruppert & Louise Ryan, 2001. "Incorporation of historical controls using semiparametric mixed models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 31-42.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
- Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
- Yuheng Ling, 2020. "Time, space and hedonic prediction accuracy: evidence from Corsican apartment markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 367-388, April.
- T. Subba Rao & Gyorgy Terdik, 2017. "A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 936-959, November.
- Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
- Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
- Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
- Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
- Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021.
"Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies,"
The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
- Petukhina, Alla A. & Reule, Raphael C. G. & Härdle, Wolfgang Karl, 2019. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," IRTG 1792 Discussion Papers 2019-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Hardle, 2020. "Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocurrencies," Papers 2009.04200, arXiv.org.
- Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
- Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
- Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
- Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014.
"Modeling structural change in the European metropolitan areas during the process of economic integration,"
Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
- Christian Longhi & Antonio Musolesi & Catherine Baumont, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Post-Print halshs-01228053, HAL.
- Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
- Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
- Philip Kostov, 2010. "Do Buyers’ Characteristics and Personal Relationships Affect Agricultural Land Prices?," Land Economics, University of Wisconsin Press, vol. 86(1), pages 48-65.
- Jussi Jousimo & Otso Ovaskainen, 2016. "A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
- Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016.
"Analysing farmland rental rates using Bayesian geoadditive quantile regression,"
European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
- März, Alexander & Klein, Nadja & Kneib, Thomas & Musshoff, Oliver, 2014. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182752, European Association of Agricultural Economists.
- März, Alexander & Klein, Nadja & Kneib, Thomas & Mußhoff, Oliver, 2014. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," DARE Discussion Papers 1403, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
More about this item
Keywords
Interpolation; Regression kriging; Smoothing; Spatial-temporal process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:102:y:2018:i:3:d:10.1007_s10182-017-0309-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.