IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v102y2018i3d10.1007_s10182-017-0309-0.html
   My bibliography  Save this article

A penalized likelihood method for nonseparable space–time generalized additive models

Author

Listed:
  • Ali M. Mosammam

    (University of Zanjan)

  • Jorge Mateu

    (Universitat Jaume I)

Abstract

In this paper, we study space–time generalized additive models. We apply the penalyzed likelihood method to fit generalized additive models (GAMs) for nonseparable spatio-temporal correlated data in order to improve the estimation of the response and smooth terms of GAMs. The results show that our space–time generalized additive models estimated response and smooth terms reasonable well, and in addition, the mean squared error, mean absolute deviation and coverage intervals improved considerably compared to the classic GAM. An application on particulate matter concentration in the North-Italian region of Piemonte is also presented.

Suggested Citation

  • Ali M. Mosammam & Jorge Mateu, 2018. "A penalized likelihood method for nonseparable space–time generalized additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 333-357, July.
  • Handle: RePEc:spr:alstar:v:102:y:2018:i:3:d:10.1007_s10182-017-0309-0
    DOI: 10.1007/s10182-017-0309-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-017-0309-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-017-0309-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helen Parise & M. P. Wand & David Ruppert & Louise Ryan, 2001. "Incorporation of historical controls using semiparametric mixed models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 31-42.
    2. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    3. Simon N. Wood & Yannig Goude & Simon Shaw, 2015. "Generalized additive models for large data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 139-155, January.
    4. Thomas Kneib & Torsten Hothorn & Gerhard Tutz, 2009. "Variable Selection and Model Choice in Geoadditive Regression Models," Biometrics, The International Biometric Society, vol. 65(2), pages 626-634, June.
    5. Augustin, Nicole H. & Musio, Monica & von Wilpert, Klaus & Kublin, Edgar & Wood, Simon N. & Schumacher, Martin, 2009. "Modeling Spatiotemporal Forest Health Monitoring Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 899-911.
    6. Huaihou Chen & Yuanjia Wang & Myunghee Cho Paik & H. Alex Choi, 2013. "A Marginal Approach to Reduced-Rank Penalized Spline Smoothing With Application to Multilevel Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1216-1229, December.
    7. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    8. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    9. Michael L. Stein, 2005. "Statistical methods for regular monitoring data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 667-687, November.
    10. Krivobokova, Tatyana & Kauermann, Goran, 2007. "A Note on Penalized Spline Smoothing With Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1328-1337, December.
    11. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    2. Ruiyan Luo & Xin Qi, 2023. "Nonlinear function‐on‐scalar regression via functional universal approximation," Biometrics, The International Biometric Society, vol. 79(4), pages 3319-3331, December.
    3. Yuheng Ling, 2020. "Time, space and hedonic prediction accuracy: evidence from Corsican apartment markets," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(2), pages 367-388, April.
    4. T. Subba Rao & Gyorgy Terdik, 2017. "A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 936-959, November.
    5. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    6. Benjamin Hofner & Andreas Mayr & Nikolay Robinzonov & Matthias Schmid, 2014. "Model-based boosting in R: a hands-on tutorial using the R package mboost," Computational Statistics, Springer, vol. 29(1), pages 3-35, February.
    7. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    8. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    9. Sandra De Iaco, 2010. "Space-time correlation analysis: a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 1027-1041.
    10. Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021. "Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
    11. Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
    12. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    13. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    14. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    15. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    16. Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
    17. Philip Kostov, 2010. "Do Buyers’ Characteristics and Personal Relationships Affect Agricultural Land Prices?," Land Economics, University of Wisconsin Press, vol. 86(1), pages 48-65.
    18. Jussi Jousimo & Otso Ovaskainen, 2016. "A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
    19. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    20. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:102:y:2018:i:3:d:10.1007_s10182-017-0309-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.