IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i5p1035-1056.html
   My bibliography  Save this article

On mitigating the analytical limitations of finely stratified experiments

Author

Listed:
  • Colin B. Fogarty

Abstract

Although attractive from a theoretical perspective, finely stratified experiments such as paired designs suffer from certain analytical limitations that are not present in block‐randomized experiments with multiple treated and control individuals in each block. In short, when using a weighted difference in means to estimate the sample average treatment effect, the traditional variance estimator in a paired experiment is conservative unless the pairwise average treatment effects are constant across pairs; however, in more coarsely stratified experiments, the corresponding variance estimator is unbiased if treatment effects are constant within blocks, even if they vary across blocks. Using insights from classical least squares theory, we present an improved variance estimator that is appropriate in finely stratified experiments. The variance estimator remains conservative in expectation but is asymptotically no more conservative than the classical estimator and can be considerably less conservative. The magnitude of the improvement depends on the extent to which effect heterogeneity can be explained by observed covariates. Aided by this estimator, a new test for the null hypothesis of a constant treatment effect is proposed. These findings extend to some, but not all, superpopulation models, depending on whether the covariates are viewed as fixed across samples.

Suggested Citation

  • Colin B. Fogarty, 2018. "On mitigating the analytical limitations of finely stratified experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1035-1056, November.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:5:p:1035-1056
    DOI: 10.1111/rssb.12290
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12290
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    2. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.
    3. Purevdorj Tuvaandorj, 2024. "A Combinatorial Central Limit Theorem for Stratified Randomization," Papers 2402.14764, arXiv.org, revised Apr 2024.
    4. Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
    5. Bikram Karmakar, 2022. "An approximation algorithm for blocking of an experimental design," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1726-1750, November.
    6. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    7. Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
    8. Colin B. Fogarty, 2023. "Testing weak nulls in matched observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2196-2207, September.
    9. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:5:p:1035-1056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.