IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2171-2183.html
   My bibliography  Save this article

A general modeling framework for open wildlife populations based on the Polya tree prior

Author

Listed:
  • Alex Diana
  • Eleni Matechou
  • Jim Griffin
  • Todd Arnold
  • Simone Tenan
  • Stefano Volponi

Abstract

Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analyzing these data. Although these models have been parameterized and fitted using different approaches, they have all been designed to either model the pattern with which individuals enter and/or exit the population, or to estimate the population size by accounting for the corresponding observation process, or both. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters linked to the entry and exit pattern (EEP) are specific to sampling occasions, or by employing parametric curves to describe the EEP. Instead, we propose a novel Bayesian nonparametric framework for modeling EEPs based on the Polya tree (PT) prior for densities. Our Bayesian nonparametric approach avoids overfitting when inferring EEPs, while simultaneously allowing more flexibility than is possible using parametric curves. Finally, we introduce the replicate PT prior for defining classes of models for these data allowing us to impose constraints on the EEPs, when required. We demonstrate our new approach using capture–recapture, count, and ring‐recovery data for two different case studies.

Suggested Citation

  • Alex Diana & Eleni Matechou & Jim Griffin & Todd Arnold & Simone Tenan & Stefano Volponi, 2023. "A general modeling framework for open wildlife populations based on the Polya tree prior," Biometrics, The International Biometric Society, vol. 79(3), pages 2171-2183, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2171-2183
    DOI: 10.1111/biom.13756
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13756
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    2. Jonathan Christensen & Li Ma, 2020. "A Bayesian hierarchical model for related densities by using Pólya trees," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 127-153, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    3. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    4. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    5. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    6. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    7. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    8. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    10. Qi Zhang & Yihui Zhang & Yemao Xia, 2024. "Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations," Mathematics, MDPI, vol. 12(5), pages 1-23, March.
    11. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    12. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    13. Ovielt Baltodano L'opez & Roberto Casarin, 2022. "A Dynamic Stochastic Block Model for Multi-Layer Networks," Papers 2209.09354, arXiv.org.
    14. Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
    15. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    16. Lauren Hoskovec & Sheena Martenies & Tori L. Burket & Sheryl Magzamen & Ander Wilson, 2022. "Association between air pollution and COVID‐19 disease severity via Bayesian multinomial logistic regression with partially missing outcomes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(7), November.
    17. Catalina A. Vallejos & Mark F. J. Steel, 2017. "Bayesian survival modelling of university outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 613-631, February.
    18. Bodnar, Olha & Bodnar, Taras, 2024. "Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    19. Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
    20. Chu, Amanda M.Y. & Omori, Yasuhiro & So, Hing-yu & So, Mike K.P., 2023. "A Multivariate Randomized Response Model for Sensitive Binary Data," Econometrics and Statistics, Elsevier, vol. 27(C), pages 16-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2171-2183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.