IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i1p127-153.html
   My bibliography  Save this article

A Bayesian hierarchical model for related densities by using Pólya trees

Author

Listed:
  • Jonathan Christensen
  • Li Ma

Abstract

Bayesian hierarchical models are used to share information between related samples and to obtain more accurate estimates of sample level parameters, common structure and variation between samples. When the parameter of interest is the distribution or density of a continuous variable, a hierarchical model for continuous distributions is required. Various such models have been described in the literature using extensions of the Dirichlet process and related processes, typically as a distribution on the parameters of a mixing kernel. We propose a new hierarchical model based on the Pólya tree, which enables direct modelling of densities and enjoys some computational advantages over the Dirichlet process. The Pólya tree also enables more flexible modelling of the variation between samples, providing more informed shrinkage and permitting posterior inference on the dispersion function, which quantifies the variation between sample densities. We also show how the model can be extended to cluster samples in situations where the observed samples are believed to have been drawn from several latent populations.

Suggested Citation

  • Jonathan Christensen & Li Ma, 2020. "A Bayesian hierarchical model for related densities by using Pólya trees," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 127-153, February.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:1:p:127-153
    DOI: 10.1111/rssb.12346
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12346
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alex Diana & Eleni Matechou & Jim Griffin & Todd Arnold & Simone Tenan & Stefano Volponi, 2023. "A general modeling framework for open wildlife populations based on the Polya tree prior," Biometrics, The International Biometric Society, vol. 79(3), pages 2171-2183, September.
    2. Antonio Lijoi & Igor Prünster & Giovanni Rebaudo, 2023. "Flexible clustering via hidden hierarchical Dirichlet priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 213-234, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:1:p:127-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.