IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p1713-1725.html
   My bibliography  Save this article

An information ratio‐based goodness‐of‐fit test for copula models on censored data

Author

Listed:
  • Tao Sun
  • Yu Cheng
  • Ying Ding

Abstract

Copula is a popular method for modeling the dependence among marginal distributions in multivariate censored data. As many copula models are available, it is essential to check if the chosen copula model fits the data well for analysis. Existing approaches to testing the fitness of copula models are mainly for complete or right‐censored data. No formal goodness‐of‐fit (GOF) test exists for interval‐censored or recurrent events data. We develop a general GOF test for copula‐based survival models using the information ratio (IR) to address this research gap. It can be applied to any copula family with a parametric form, such as the frequently used Archimedean, Gaussian, and D‐vine families. The test statistic is easy to calculate, and the test procedure is straightforward to implement. We establish the asymptotic properties of the test statistic. The simulation results show that the proposed test controls the type‐I error well and achieves adequate power when the dependence strength is moderate to high. Finally, we apply our method to test various copula models in analyzing multiple real datasets. Our method consistently separates different copula models for all these datasets in terms of model fitness.

Suggested Citation

  • Tao Sun & Yu Cheng & Ying Ding, 2023. "An information ratio‐based goodness‐of‐fit test for copula models on censored data," Biometrics, The International Biometric Society, vol. 79(3), pages 1713-1725, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1713-1725
    DOI: 10.1111/biom.13807
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13807
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    2. Nicole Barthel & Candida Geerdens & Claudia Czado & Paul Janssen, 2019. "Dependence modeling for recurrent event times subject to right‐censoring with D‐vine copulas," Biometrics, The International Biometric Society, vol. 75(2), pages 439-451, June.
    3. Chen, Xiaohong & Fan, Yanqin & Pouzo, Demian & Ying, Zhiliang, 2010. "Estimation and model selection of semiparametric multivariate survival functions under general censorship," Journal of Econometrics, Elsevier, vol. 157(1), pages 129-142, July.
    4. Emura, Takeshi & Lin, Chien-Wei & Wang, Weijing, 2010. "A goodness-of-fit test for Archimedean copula models in the presence of right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3033-3043, December.
    5. Artem Prokhorov & Ulf Schepsmeier & Yajing Zhu, 2019. "Generalized information matrix tests for copulas," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1024-1054, October.
    6. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    7. Liuquan Sun & Lianming Wang & Jianguo Sun, 2006. "Estimation of the Association for Bivariate Interval‐censored Failure Time Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 637-649, December.
    8. Juan Lin & Ximing Wu, 2020. "A diagnostic test for specification of copulas under censorship," Econometric Reviews, Taylor & Francis Journals, vol. 39(9), pages 930-946, October.
    9. Qian M. Zhou & Peter X.-K. Song & Mary E. Thompson, 2012. "Information Ratio Test for Model Misspecification in Quasi-Likelihood Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 205-213, March.
    10. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian M. Zhou, 2024. "Information matrix equivalence in the presence of censoring: a goodness-of-fit test for semiparametric copula models with multivariate survival data," Statistical Papers, Springer, vol. 65(7), pages 4677-4713, September.
    2. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    3. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    4. repec:hum:wpaper:sfb649dp2013-041 is not listed on IDEAS
    5. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    6. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    7. Tao Sun & Yi Liu & Richard J. Cook & Wei Chen & Ying Ding, 2019. "Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 546-568, July.
    8. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    9. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    10. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    11. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    12. Philipp Arbenz, 2013. "Bayesian Copulae Distributions, with Application to Operational Risk Management—Some Comments," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 105-108, March.
    13. Azam, Kazim, 2014. "Effects of Marginal Specifcations on Copula Estimation," Economic Research Papers 270230, University of Warwick - Department of Economics.
    14. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    15. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    16. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    17. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    18. Shirong Zhao & Jeremy Losak, 2024. "Two-tiered stochastic frontier models: a Bayesian perspective," Journal of Productivity Analysis, Springer, vol. 61(2), pages 85-106, April.
    19. Frazier, David T. & Renault, Eric, 2017. "Efficient two-step estimation via targeting," Journal of Econometrics, Elsevier, vol. 201(2), pages 212-227.
    20. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    21. Zichen Ma & Shannon W. Davis & Yen‐Yi Ho, 2023. "Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments," Biometrics, The International Biometric Society, vol. 79(2), pages 1559-1572, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:1713-1725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.