IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3033-3043.html
   My bibliography  Save this article

A goodness-of-fit test for Archimedean copula models in the presence of right censoring

Author

Listed:
  • Emura, Takeshi
  • Lin, Chien-Wei
  • Wang, Weijing

Abstract

A goodness-of-fit testing procedure for Archimedean copula (AC) models is developed based on right-censored data. The proposed approach extends an existing method, which is suitable for the Clayton model, to general AC models. Asymptotic properties of the proposed test statistics under the true model assumption are derived. Simulation analysis shows that the proposed test has reasonable performance. Finally, two real data examples are analyzed for illustrative purposes.

Suggested Citation

  • Emura, Takeshi & Lin, Chien-Wei & Wang, Weijing, 2010. "A goodness-of-fit test for Archimedean copula models in the presence of right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3033-3043, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3033-3043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00115-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Hsieh, Jin-Jian, 2010. "Estimation of Kendall's tau from censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1613-1621, June.
    3. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    4. Dobric, Jadran & Schmid, Friedrich, 2007. "A goodness of fit test for copulas based on Rosenblatt's transformation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4633-4642, May.
    5. Nikoloulopoulos, Aristidis K. & Karlis, Dimitris, 2008. "Copula model evaluation based on parametric bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3342-3353, March.
    6. Vaart,A. W. van der, 1998. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521496032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathryn Wifvat & John Kumerow & Arkady Shemyakin, 2020. "Copula Model Selection for Vehicle Component Failures Based on Warranty Claims," Risks, MDPI, vol. 8(2), pages 1-15, June.
    2. Tao Sun & Yu Cheng & Ying Ding, 2023. "An information ratio‐based goodness‐of‐fit test for copula models on censored data," Biometrics, The International Biometric Society, vol. 79(3), pages 1713-1725, September.
    3. Qian M. Zhou, 2024. "Information matrix equivalence in the presence of censoring: a goodness-of-fit test for semiparametric copula models with multivariate survival data," Statistical Papers, Springer, vol. 65(7), pages 4677-4713, September.
    4. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2020. "Copula-based regression models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    5. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    6. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    2. Bücher, Axel & Dette, Holger, 2010. "Some comments on goodness-of-fit tests for the parametric form of the copula based on L2-distances," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 749-763, March.
    3. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    4. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    5. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2020. "Goodness-of-fit testing for copulas: A distribution-free approach," Other publications TiSEM 211b2be9-b46e-41e2-9b95-1, Tilburg University, School of Economics and Management.
    6. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    7. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    8. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    9. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    10. Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.
    11. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2017. "Asymptotically Distribution-Free Goodness-of-Fit Testing for Copulas," Discussion Paper 2017-052, Tilburg University, Center for Economic Research.
    12. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    13. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    14. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    15. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    16. repec:hum:wpaper:sfb649dp2013-041 is not listed on IDEAS
    17. Fang, Y. & Madsen, L., 2013. "Modified Gaussian pseudo-copula: Applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 292-301.
    18. Xiaobing Zhao & Xian Zhou, 2015. "Semiparametric models of longitudinal and time-to-event data with applications to HIV viral dynamics and CD4 counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2461-2477, November.
    19. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    20. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    21. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3033-3043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.