IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v11y2022i3p9.html
   My bibliography  Save this article

Bayesian Bivariate Cure Rate Models Using Copula Functions

Author

Listed:
  • Jie Huang
  • Haiming Zhou
  • Nader Ebrahimi

Abstract

Bivariate survival cure rate models extend the understanding of time-to-event data by allowing for a cured fraction of the population and dependence between paired units and make more accurate and informative conclusions. In this paper, we propose a Bayesian bivariate cure rate mode where a correlation coefficient is used for the association between bivariate cure rate fractions and a new generalized Farlie Gumbel Morgenstern (FGM) copula function is applied to model the dependence structure of bivariate survival times. For each marginal survival time, we apply a Weibull distribution, a log normal distribution, and a flexible three-parameter generalized extreme value (GEV) distribution to compare their performance. For the survival model fitting, DIC and LPML are used for model comparison. We perform a goodness-of-fit test for the new copula. Finally, we illustrate the performance of the proposed methods in simulated data and real data via Bayesian paradigm.

Suggested Citation

  • Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
  • Handle: RePEc:ibn:ijspjl:v:11:y:2022:i:3:p:9
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ijsp/article/download/0/0/46877/50125
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ijsp/article/view/0/46877
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2002. "Bayesian Inference for Multivariate Survival Data with a Cure Fraction," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 101-126, January.
    2. Yashin, Anatoli I. & Iachine, Ivan A., 1999. "Dependent Hazards in Multivariate Survival Problems," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 241-261, November.
    3. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    4. Hakim Bekrizadeh & Babak Jamshidi, 2017. "A new class of bivariate copulas: dependence measures and properties," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 31-50, April.
    5. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    6. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    7. Chen, Chyong-Mei & Lu, Tai-Fang C. & Hsu, Chao-Min, 2013. "Association estimation for clustered failure time data with a cure fraction," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 210-222.
    8. Zhang, Jiajia & Peng, Yingwei, 2007. "An alternative estimation method for the accelerated failure time frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4413-4423, May.
    9. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    10. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    2. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    3. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    4. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2020. "Goodness-of-fit testing for copulas: A distribution-free approach," Other publications TiSEM 211b2be9-b46e-41e2-9b95-1, Tilburg University, School of Economics and Management.
    5. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    6. Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.
    7. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2017. "Asymptotically Distribution-Free Goodness-of-Fit Testing for Copulas," Discussion Paper 2017-052, Tilburg University, Center for Economic Research.
    8. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Svetlana Gribkova & Olivier Lopez, 2015. "Non-parametric Copula Estimation Under Bivariate Censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 925-946, December.
    10. Boubaker, Heni & Sghaier, Nadia, 2013. "Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 361-377.
    11. repec:hum:wpaper:sfb649dp2013-041 is not listed on IDEAS
    12. Fang, Y. & Madsen, L., 2013. "Modified Gaussian pseudo-copula: Applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 292-301.
    13. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    14. Jean-David Fermanian & Dragan Radulovic & Marten Wegkamp, 2013. "A Asymptotic Total Variation Test for Copulas," Working Papers 2013-25, Center for Research in Economics and Statistics.
    15. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
    16. Rezapour, Mohsen, 2015. "On the construction of nested Archimedean copulas for d-monotone generators," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 21-32.
    17. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.
    18. Dante Amengual & Enrique Sentana, 2020. "Is a Normal Copula the Right Copula?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 350-366, April.
    19. Gaißer, Sandra & Schmid, Friedrich, 2010. "On testing equality of pairwise rank correlations in a multivariate random vector," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2598-2615, November.
    20. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    21. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:11:y:2022:i:3:p:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.