IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v38y2019i9p1024-1054.html
   My bibliography  Save this article

Generalized information matrix tests for copulas

Author

Listed:
  • Artem Prokhorov
  • Ulf Schepsmeier
  • Yajing Zhu

Abstract

We propose a family of goodness-of-fit tests for copulas. The tests use generalizations of the information matrix (IM) equality of White and so relate to the copula test proposed by Huang and Prokhorov. The idea is that eigenspectrum-based statements of the IM equality reduce the degrees of freedom of the test’s asymptotic distribution and lead to better size-power properties, even in high dimensions. The gains are especially pronounced for vine copulas, where additional benefits come from simplifications of score functions and the Hessian. We derive the asymptotic distribution of the generalized tests, accounting for the nonparametric estimation of the marginals and apply a parametric bootstrap procedure, valid when asymptotic critical values are inaccurate. In Monte Carlo simulations, we study the behavior of the new tests, compare them with several Cramer–von Mises type tests and confirm the desired properties of the new tests in high dimensions.

Suggested Citation

  • Artem Prokhorov & Ulf Schepsmeier & Yajing Zhu, 2019. "Generalized information matrix tests for copulas," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1024-1054, October.
  • Handle: RePEc:taf:emetrv:v:38:y:2019:i:9:p:1024-1054
    DOI: 10.1080/07474938.2018.1514023
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2018.1514023
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2018.1514023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Sun & Yu Cheng & Ying Ding, 2023. "An information ratio‐based goodness‐of‐fit test for copula models on censored data," Biometrics, The International Biometric Society, vol. 79(3), pages 1713-1725, September.
    2. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    3. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    4. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2016. "Generalized Information Matrix Tests for Detecting Model Misspecification," Econometrics, MDPI, vol. 4(4), pages 1-24, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:38:y:2019:i:9:p:1024-1054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.