IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p775-787.html
   My bibliography  Save this article

Coherent modeling of longitudinal causal effects on binary outcomes

Author

Listed:
  • Linbo Wang
  • Xiang Meng
  • Thomas S. Richardson
  • James M. Robins

Abstract

Analyses of biomedical studies often necessitate modeling longitudinal causal effects. The current focus on personalized medicine and effect heterogeneity makes this task even more challenging. Toward this end, structural nested mean models (SNMMs) are fundamental tools for studying heterogeneous treatment effects in longitudinal studies. However, when outcomes are binary, current methods for estimating multiplicative and additive SNMM parameters suffer from variation dependence between the causal parameters and the noncausal nuisance parameters. This leads to a series of difficulties in interpretation, estimation, and computation. These difficulties have hindered the uptake of SNMMs in biomedical practice, where binary outcomes are very common. We solve the variation dependence problem for the binary multiplicative SNMM via a reparameterization of the noncausal nuisance parameters. Our novel nuisance parameters are variation independent of the causal parameters, and hence allow for coherent modeling of heterogeneous effects from longitudinal studies with binary outcomes. Our parameterization also provides a key building block for flexible doubly robust estimation of the causal parameters. Along the way, we prove that an additive SNMM with binary outcomes does not admit a variation independent parameterization, thereby justifying the restriction to multiplicative SNMMs.

Suggested Citation

  • Linbo Wang & Xiang Meng & Thomas S. Richardson & James M. Robins, 2023. "Coherent modeling of longitudinal causal effects on binary outcomes," Biometrics, The International Biometric Society, vol. 79(2), pages 775-787, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:775-787
    DOI: 10.1111/biom.13687
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13687
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Vansteelandt & E. Goetghebeur, 2003. "Causal inference with generalized structural mean models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 817-835, November.
    2. James Robins & Andrea Rotnitzky, 2004. "Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models," Biometrika, Biometrika Trust, vol. 91(4), pages 763-783, December.
    3. Linbo Wang & Yuexia Zhang & Thomas S Richardson & James M Robins, 2021. "Estimation of local treatment effects under the binary instrumental variable model [Bootstrap tests for distributional treatment effects in instrumental variable models]," Biometrika, Biometrika Trust, vol. 108(4), pages 881-894.
    4. Stijn Vansteelandt, 2010. "Estimation of controlled direct effects on a dichotomous outcome using logistic structural direct effect models," Biometrika, Biometrika Trust, vol. 97(4), pages 921-934.
    5. Robin Henderson & Phil Ansell & Deyadeen Alshibani, 2010. "Regret-Regression for Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 66(4), pages 1192-1201, December.
    6. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    7. Thomas S. Richardson & James M. Robins & Linbo Wang, 2017. "On Modeling and Estimation for the Relative Risk and Risk Difference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1121-1130, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    2. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    3. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    4. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    5. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    6. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
    7. Paul Clarke & Frank Windmeijer, 2009. "Identification of Causal Effects on Binary Outcomes Using Structural Mean Models," The Centre for Market and Public Organisation 09/217, The Centre for Market and Public Organisation, University of Bristol, UK.
    8. Jiacheng Wu & Nina Galanter & Susan M. Shortreed & Erica E.M. Moodie, 2022. "Ranking tailoring variables for constructing individualized treatment rules: An application to schizophrenia," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 309-330, March.
    9. Paul S. Clarke & Frank Windmeijer, 2012. "Instrumental Variable Estimators for Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1638-1652, December.
    10. Paul S. Clarke & Tom M. Palmer & Frank Windmeijer, 2011. "Estimating structural mean models with multiple instrumental variables using the generalised method of moments," CeMMAP working papers CWP28/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Ditte Nørbo Sørensen & Torben Martinussen & Eric Tchetgen Tchetgen, 2019. "A causal proportional hazards estimator under homogeneous or heterogeneous selection in an IV setting," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 639-659, October.
    12. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    13. He Jiwei & Stephens-Shields Alisa & Joffe Marshall, 2015. "Structural Nested Mean Models to Estimate the Effects of Time-Varying Treatments on Clustered Outcomes," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 203-222, November.
    14. Eric B. Laber & Daniel J. Lizotte & Bradley Ferguson, 2014. "Set-valued dynamic treatment regimes for competing outcomes," Biometrics, The International Biometric Society, vol. 70(1), pages 53-61, March.
    15. Mark van der Laan & Alan Hubbard & Nicholas Jewell, 2004. "Estimation of Treatment Effects in Randomized Trials with Noncompliance and a Dichotomous Outcome," U.C. Berkeley Division of Biostatistics Working Paper Series 1157, Berkeley Electronic Press.
    16. Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
    17. Mélanie Prague & Daniel Commenges & Julia Drylewicz & Rodolphe Thiébaut, 2012. "Treatment Monitoring of HIV-Infected Patients based on Mechanistic Models," Biometrics, The International Biometric Society, vol. 68(3), pages 902-911, September.
    18. Murielle Bochud & Valentin Rousson, 2010. "Usefulness of Mendelian Randomization in Observational Epidemiology," IJERPH, MDPI, vol. 7(3), pages 1-18, February.
    19. Ali Reza Soltanian & Soghrat Faghihzadeh, 2012. "A generalization of the Grizzle model to the estimation of treatment effects in crossover trials with non-compliance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1037-1048, October.
    20. Kern, Holger & Hainmueller, Jens, 2007. "Opium for the Masses: How Foreign Free Media Can Stabilize Authoritarian Regimes," MPRA Paper 2702, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:775-787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.