IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p1121-1130.html
   My bibliography  Save this article

On Modeling and Estimation for the Relative Risk and Risk Difference

Author

Listed:
  • Thomas S. Richardson
  • James M. Robins
  • Linbo Wang

Abstract

A common problem in formulating models for the relative risk and risk difference is the variation dependence between these parameters and the baseline risk, which is a nuisance model. We address this problem by proposing the conditional log odds-product as a preferred nuisance model. This novel nuisance model facilitates maximum-likelihood estimation, but also permits doubly-robust estimation for the parameters of interest. Our approach is illustrated via simulations and a data analysis. An R package {\tt brm} implementing the proposed methods is available on CRAN. Supplementary materials for this article are available online.

Suggested Citation

  • Thomas S. Richardson & James M. Robins & Linbo Wang, 2017. "On Modeling and Estimation for the Relative Risk and Risk Difference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1121-1130, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1121-1130
    DOI: 10.1080/01621459.2016.1192546
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1192546
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1192546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Rejoinder to discussions on “Instrumental variable estimation of the causal hazard ratio”," Biometrics, The International Biometric Society, vol. 79(2), pages 564-568, June.
    2. Linbo Wang & Xiang Meng & Thomas S. Richardson & James M. Robins, 2023. "Coherent modeling of longitudinal causal effects on binary outcomes," Biometrics, The International Biometric Society, vol. 79(2), pages 775-787, June.
    3. Stijn Vansteelandt & Oliver Dukes, 2022. "Authors' reply to the Discussion of ‘Assumption‐lean inference for generalised linear model parameters’ by Vansteelandt and Dukes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 729-739, July.
    4. Maria Cuellar & Edward H. Kennedy, 2020. "A non‐parametric projection‐based estimator for the probability of causation, with application to water sanitation in Kenya," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1793-1818, October.
    5. Thomas S. Richardson, 2022. "Thomas S. Richardson’s contribution to the Discussion of ‘Assumption‐lean inference for generalised linear model parameters’ by Vansteelandt and Dukes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 719-720, July.
    6. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
    7. Tyler J. VanderWeele, 2020. "Optimal approximate conversions of odds ratios and hazard ratios to risk ratios," Biometrics, The International Biometric Society, vol. 76(3), pages 746-752, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1121-1130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.