WiSER: Robust and scalable estimation and inference of within‐subject variances from intensive longitudinal data
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13506
Download full text from publisher
References listed on IDEAS
- Donald Hedeker & Robin J. Mermelstein & Hakan Demirtas, 2008. "An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data," Biometrics, The International Biometric Society, vol. 64(2), pages 627-634, June.
- Huajun Ye & Jianxin Pan, 2006. "Modelling of covariance structures in generalised estimating equations for longitudinal data," Biometrika, Biometrika Trust, vol. 93(4), pages 927-941, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
- Christoph Spörlein & Elmar Schlueter, 2018. "How education systems shape cross-national ethnic inequality in math competence scores: Moving beyond mean differences," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-21, March.
- Jing Lv & Chaohui Guo, 2017. "Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data," Computational Statistics, Springer, vol. 32(3), pages 947-975, September.
- Yu, Jing & Nummi, Tapio & Pan, Jianxin, 2022. "Mixture regression for longitudinal data based on joint mean–covariance model," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Shelley A. Blozis, 2022. "Bayesian two-part multilevel model for longitudinal media use data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(4), pages 311-328, December.
- Dengke Xu & Zhongzhan Zhang & Liucang Wu, 2014. "Bayesian analysis of joint mean and covariance models for longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2504-2514, November.
- Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
- Ian Brunton-Smith & Patrick Sturgis & George Leckie, 2017. "Detecting and understanding interviewer effects on survey data by using a cross-classified mixed effects location–scale model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 551-568, February.
- Jing Lv & Chaohui Guo, 2019. "Quantile estimations via modified Cholesky decomposition for longitudinal single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1163-1199, October.
- Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
- Jing Lv & Chaohui Guo & Jibo Wu, 2019. "Smoothed empirical likelihood inference via the modified Cholesky decomposition for quantile varying coefficient models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 999-1032, September.
- Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Ziqi Chen & Man†Lai Tang & Wei Gao, 2018. "A profile likelihood approach for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 74(1), pages 220-228, March.
- Steffen Nestler & Sarah Humberg, 2022. "A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 506-532, June.
- Daniel McNeish & Denis Dumas & Dario Torre & Neil Rice, 2022. "Modelling time to maximum competency in medical student progress tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2007-2034, October.
- Maria Iannario & Maria Kateri & Claudia Tarantola, 2024. "Modelling scale effects in rating data: a Bayesian approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4053-4071, October.
- Yixin Chen & Weixin Yao, 2017. "Unified Inference for Sparse and Dense Longitudinal Data in Time-varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 268-284, March.
- Lv, Jing & Guo, Chaohui & Yang, Hu & Li, Yalian, 2017. "A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 129-144.
- Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.
- Lin, Lijing & Higham, Nicholas J. & Pan, Jianxin, 2014. "Covariance structure regularization via entropy loss function," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 315-327.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1313-1327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.