IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v10y2022i4d10.1057_s41270-022-00172-9.html
   My bibliography  Save this article

Bayesian two-part multilevel model for longitudinal media use data

Author

Listed:
  • Shelley A. Blozis

    (University of California, Davis)

Abstract

Multilevel models are effective marketing analytic tools that can test for consumer differences in longitudinal data. A two-part multilevel model is a special case of a multilevel model developed for semi-continuous data, such as data that include a combination of zeros and continuous values. For repeated measures of media use data, a two-part multilevel model informs market research about consumer-specific likeliness to use media, level of use across time, and variation in use over time. These models are typically estimated using maximum likelihood. There are, however, tremendous advantages to using a Bayesian framework, including the ease at which the analyst can take into account information learned from previous investigations. This paper develops a Bayesian approach to estimating a two-part multilevel model and illustrates its use by applying the model to daily diary measures of television use in a large US sample.

Suggested Citation

  • Shelley A. Blozis, 2022. "Bayesian two-part multilevel model for longitudinal media use data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(4), pages 311-328, December.
  • Handle: RePEc:pal:jmarka:v:10:y:2022:i:4:d:10.1057_s41270-022-00172-9
    DOI: 10.1057/s41270-022-00172-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-022-00172-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-022-00172-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katakam, Bharath Shashanka & Bhukya, Ramulu & Bellamkonda, Raja Shekhar & Samala, Nagaraj, 2021. "Longitudinal analysis versus cross-sectional analysis in assessing the factors influencing shoppers’ impulse purchase behavior – Do the store ambience and salesperson interactions really matter?," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    2. V. Kumar & JeeWon Brianna Choi & Mallik Greene, 2017. "Synergistic effects of social media and traditional marketing on brand sales: capturing the time-varying effects," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 268-288, March.
    3. Hedeker, Donald & Nordgren, Rachel, 2013. "MIXREGLS: A Program for Mixed-Effects Location Scale Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i12).
    4. Taipale, Sakari & Oinas, Tomi & Karhinen, Joonas, 2021. "Heterogeneity of traditional and digital media use among older adults: A six-country comparison," Technology in Society, Elsevier, vol. 66(C).
    5. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    6. Donald Hedeker & Robin J. Mermelstein & Hakan Demirtas, 2008. "An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data," Biometrics, The International Biometric Society, vol. 64(2), pages 627-634, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Petrescu & Anjala S. Krishen, 2023. "Mapping 2022 in Journal of Marketing Analytics: what lies ahead?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(1), pages 1-4, March.
    2. Carlos Lamela-Orcasitas & Jesús García-Madariaga, 2023. "How to really quantify the economic value of customer information in corporate databases," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.
    2. Ian Brunton-Smith & Patrick Sturgis & George Leckie, 2017. "Detecting and understanding interviewer effects on survey data by using a cross-classified mixed effects location–scale model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 551-568, February.
    3. Steffen Nestler & Sarah Humberg, 2022. "A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 506-532, June.
    4. Ni, Xinwen, 2019. "Voting for Health Insurance Policy: the U.S. versus Europe," IRTG 1792 Discussion Papers 2019-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Buntin, Melinda Beeuwkes & Zaslavsky, Alan M., 2004. "Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures," Journal of Health Economics, Elsevier, vol. 23(3), pages 525-542, May.
    6. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
    7. Glenn W. Harrison & James P. Feehan & Alison C. Edwards & Jorge Segovia, 2003. "Cigarette Smoking and the Cost of Hospital and Physician Care," Canadian Public Policy, University of Toronto Press, vol. 29(1), pages 1-19, March.
    8. Liu, Jin-Long & Liu, Jin-Tan & Hammitt, James K. & Chou, Shin-Yi, 1999. "The price elasticity of opium in Taiwan, 1914-1942," Journal of Health Economics, Elsevier, vol. 18(6), pages 795-810, December.
    9. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
    10. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    11. Susan L. Ettner & Betsy L. Cadwell & Louise B. Russell & Arleen Brown & Andrew J. Karter & Monika Safford & Carol Mangione & Gloria Beckles & William H. Herman & Theodore J. Thompson & and The TRIAD S, 2009. "Investing time in health: do socioeconomically disadvantaged patients spend more or less extra time on diabetes self‐care?," Health Economics, John Wiley & Sons, Ltd., vol. 18(6), pages 645-663, June.
    12. Ulf‐ G. Gerdtham, 1997. "Equity in Health Care Utilization: Further Tests Based on Hurdle Models and Swedish Micro Data," Health Economics, John Wiley & Sons, Ltd., vol. 6(3), pages 303-319, May.
    13. Michael Smart & Mark Stabile, 2005. "Tax credits, insurance, and the use of medical care," Canadian Journal of Economics, Canadian Economics Association, vol. 38(2), pages 345-365, May.
    14. Carole Roan Gresenz & Jeanette A. Rogowski & Jose Escarce, 2004. "Healthcare Markets, the Safety Net and Access to Care Among the Uninsured," NBER Working Papers 10799, National Bureau of Economic Research, Inc.
    15. Partha Deb & Murat K. Munkin & Pravin K. Trivedi, 2006. "Bayesian analysis of the two‐part model with endogeneity: application to health care expenditure," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 1081-1099, November.
    16. Sheila Hoag & Adam Swinburn & Sean Orzol & Michael Barna & Maggie Colby & Brenda Natzke & Christopher Trenholm & Fredric Blavin & Genevieve M. Kenney & Michale Huntress & Others, 2013. "CHIPRA Mandated Evaluation of Express Lane Eligibility: Final Findings," Mathematica Policy Research Reports 257e261f5ab440728eb301712, Mathematica Policy Research.
    17. Mandy Ryan & Emmanouil Mentzakis & Catriona Matheson & Christine Bond, 2020. "Survey modes comparison in contingent valuation: Internet panels and mail surveys," Health Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 234-242, February.
    18. Giampiero Marra & Matteo Fasiolo & Rosalba Radice & Rainer Winkelmann, 2023. "A flexible copula regression model with Bernoulli and Tweedie margins for estimating the effect of spending on mental health," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1305-1322, June.
    19. Jay Dev Dubey, 2021. "Measuring Income Elasticity of Healthcare-Seeking Behavior in India: A Conditional Quantile Regression Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 767-793, December.
    20. Kevin E. Staub, 2014. "A Causal Interpretation of Extensive and Intensive Margin Effects in Generalized Tobit Models," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 371-375, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:10:y:2022:i:4:d:10.1057_s41270-022-00172-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.