Gaussian graphical model‐based heterogeneity analysis via penalized fusion
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13426
Download full text from publisher
References listed on IDEAS
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
- Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
- Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
- Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
- Hassen Kared & Shu Wen Tan & Mai Chan Lau & Marion Chevrier & Crystal Tan & Wilson How & Glenn Wong & Marie Strickland & Benoit Malleret & Amanda Amoah & Karolina Pilipow & Veronica Zanon & Naomi Mc G, 2020. "Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei Dong & Hongzhen Liu, 2024. "Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
- Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2021. "Conditional score matching for high-dimensional partial graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
- Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
- Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
- Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
- Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
- van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Shanghong Xie & Xiang Li & Peter McColgan & Rachael I. Scahill & Donglin Zeng & Yuanjia Wang, 2020. "Identifying disease‐associated biomarker network features through conditional graphical model," Biometrics, The International Biometric Society, vol. 76(3), pages 995-1006, September.
- Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
- Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
- Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2022. "Jewel 2.0 : An Improved Joint Estimation Method for Multiple Gaussian Graphical Models," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
- Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Bin Guo & Song Xi Chen, 2016.
"Tests for high dimensional generalized linear models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
- Chen, Song Xi & Guo, Bin, 2014. "Tests for High Dimensional Generalized Linear Models," MPRA Paper 59816, University Library of Munich, Germany.
- Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
- Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Huitong Qiu & Fang Han & Han Liu & Brian Caffo, 2016. "Joint estimation of multiple graphical models from high dimensional time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 487-504, March.
- Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
- Christine B. Peterson & Nathan Osborne & Francesco C. Stingo & Pierrick Bourgeat & James D. Doecke & Marina Vannucci, 2020. "Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 76(4), pages 1120-1132, December.
- Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:524-535. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.