IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v73y2014icp16-26.html
   My bibliography  Save this article

Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure

Author

Listed:
  • Austin, Matthew D.
  • Betensky, Rebecca A.

Abstract

While the currently available estimators for the conditional Kendall’s tau measure of association between truncation and failure are valid for testing the null hypothesis of quasi-independence, they are biased when the null does not hold. This is because they converge to quantities that depend on the censoring distribution. The magnitude of the bias relative to the theoretical Kendall’s tau measure of association between truncation and failure due to censoring has not been studied, and so its importance in real problems is not known. We quantify this bias in order to assess the practical usefulness of the estimators. Furthermore, we propose inverse probability weighted versions of the conditional Kendall’s tau estimators to remove the effects of censoring and provide asymptotic results for the estimators. In simulations, we demonstrate the decrease in bias achieved by these inverse probability weighted estimators. We apply the estimators to the Channing House data set and an AIDS incubation data set.

Suggested Citation

  • Austin, Matthew D. & Betensky, Rebecca A., 2014. "Eliminating bias due to censoring in Kendall’s tau estimators for quasi-independence of truncation and failure," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 16-26.
  • Handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:16-26
    DOI: 10.1016/j.csda.2013.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313004568
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lajmi Lakhal Chaieb & Louis-Paul Rivest & Belkacem Abdous, 2006. "Estimating survival under a dependent truncation," Biometrika, Biometrika Trust, vol. 93(3), pages 655-669, September.
    2. Beaudoin, David & Duchesne, Thierry & Genest, Christian, 2007. "Improving the estimation of Kendall's tau when censoring affects only one of the variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5743-5764, August.
    3. Martin, Emily C. & Betensky, Rebecca A., 2005. "Testing Quasi-Independence of Failure and Truncation Times via Conditional Kendall's Tau," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 484-492, June.
    4. Somnath Datta & Dipankar Bandyopadhyay & Glen A. Satten, 2010. "Inverse Probability of Censoring Weighted U‐statistics for Right‐Censored Data with an Application to Testing Hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 680-700, December.
    5. Lakhal Lajmi & Rivest Louis-Paul & Beaudoin David, 2009. "IPCW Estimator for Kendall's Tau under Bivariate Censoring," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-22, February.
    6. Mandel, Micha & Betensky, Rebecca A., 2008. "Simultaneous confidence intervals based on the percentile bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2158-2165, January.
    7. David Oakes, 2008. "On consistency of Kendall's tau under censoring," Biometrika, Biometrika Trust, vol. 95(4), pages 997-1001.
    8. Sun, Liuquan & Zhu, Lixing, 2000. "A semiparametric model for truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 48(3), pages 217-227, July.
    9. Jacobo Uña-álvarez, 2004. "Nonparametric estimation under length-biased sampling and Type I censoring: A moment based approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(4), pages 667-681, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    2. Jing Qian & Sy Han Chiou & Rebecca A. Betensky, 2022. "Transformation model based regression with dependently truncated and independently censored data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 395-416, March.
    3. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    4. Jing Qian & Rebecca A. Betensky, 2023. "Nonparametric bounds for the survivor function under general dependent truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 327-357, March.
    5. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van den Berg, Gerard J. & Effraimidis, Georgios, 2014. "Dependence Measures in Bivariate Gamma Frailty Models," IZA Discussion Papers 8083, Institute of Labor Economics (IZA).
    2. Lior Rennert & Sharon X. Xie, 2022. "Cox regression model under dependent truncation," Biometrics, The International Biometric Society, vol. 78(2), pages 460-473, June.
    3. Takeshi Emura & Chi-Hung Pan, 2020. "Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach," Statistical Papers, Springer, vol. 61(1), pages 479-501, February.
    4. Jing Qian & Sy Han Chiou & Rebecca A. Betensky, 2022. "Transformation model based regression with dependently truncated and independently censored data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 395-416, March.
    5. Emura, Takeshi & Konno, Yoshihiko, 2012. "A goodness-of-fit test for parametric models based on dependently truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2237-2250.
    6. Hsieh, Jin-Jian, 2010. "Estimation of Kendall's tau from censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1613-1621, June.
    7. Ying Wu & Richard J. Cook, 2018. "Variable selection and prediction in biased samples with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 72-93, January.
    8. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    9. Carla Moreira & Jacobo de Uña-Álvarez & Roel Braekers, 2021. "Nonparametric estimation of a distribution function from doubly truncated data under dependence," Computational Statistics, Springer, vol. 36(3), pages 1693-1720, September.
    10. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    11. Ruosha Li & Yu Cheng & Qingxia Chen & Jason Fine, 2017. "Quantile association for bivariate survival data," Biometrics, The International Biometric Society, vol. 73(2), pages 506-516, June.
    12. Micha Mandel & Rebecca A. Betensky, 2007. "Testing Goodness of Fit of a Uniform Truncation Model," Biometrics, The International Biometric Society, vol. 63(2), pages 405-412, June.
    13. Emura, Takeshi & Wang, Weijing, 2010. "Testing quasi-independence for truncation data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 223-239, January.
    14. Ghosh Debashis, 2008. "On the Plackett Distribution with Bivariate Censored Data," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-24, May.
    15. Pao-Sheng Shen, 2011. "Testing quasi-independence for doubly truncated data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 753-761.
    16. Emura, Takeshi & Wang, Weijing, 2009. "Testing Quasi-independence for Truncation Data," MPRA Paper 58582, University Library of Munich, Germany.
    17. Shen, Pao-sheng & Hsu, Huichen, 2020. "Conditional maximum likelihood estimation for semiparametric transformation models with doubly truncated data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Derumigny Alexis & Fermanian Jean-David, 2019. "On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior," Dependence Modeling, De Gruyter, vol. 7(1), pages 292-321, January.
    19. Emura, Takeshi & Wang, Weijing, 2012. "Nonparametric maximum likelihood estimation for dependent truncation data based on copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 171-188.
    20. Jing Qian & Rebecca A. Betensky, 2023. "Nonparametric bounds for the survivor function under general dependent truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 327-357, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:16-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.